Exercice 1:

Pour chacune des fonctions ci-dessous, calculer f(a) - f(b) et factoriser au maximum le résultat pour pouvoir étudier son signe.

$$f_1: x \mapsto 3(x-5)^2 + 3$$
 $f_2: x \mapsto -3(x+2)^2 - 1$ $f_3: x \mapsto -3\left(-x + \frac{1}{2}\right)^2 - 1$
 $f_4: x \mapsto 4x^2 + 6x - 1$ $f_5: x \mapsto -5x^2 + 2x + 3$ $f_6: x \mapsto 7x^2 + 3x - 1$
 $f_7: x \mapsto \frac{2}{2x+5}$ $f_8: x \mapsto -\frac{1}{5-x}$ $f_9: x \mapsto \frac{-2}{3+x}$

Exercice 2:

Étudier les variations des fonctions suivantes :

- 1. f_1 sur l'intervalle $]-\infty;5]$ puis ensuite sur $[5;+\infty[$. En déduire son minimum global.
- 2. f_5 sur l'intervalle $\left]-\infty;\frac{1}{5}\right]$ puis ensuite sur $\left[\frac{1}{5};+\infty\right[$. En déduire son maximum global.
- 3. f_8 sur l'intervalle $]-\infty; 5[$ puis ensuite sur $]5; +\infty[$.

Exercice 3:

Pour chacune des fonctions ci-dessous, étudier sa parité. (Trouver si la fonction est paire ou impaire ou ni paire, ni impaire).

$$f_1: x \mapsto -4x^2$$
 $f_2: x \mapsto 3x^3 + x$ $f_3: x \mapsto -5x^2 + x$
 $f_4: x \mapsto \frac{x^2}{x^3 - 1}$ $f_5: x \mapsto \frac{x^2}{x^2 + 1}$ $f_6: x \mapsto \frac{x^3}{x^3 - x}$
 $f_7: x \mapsto \frac{4x^2 + 3}{x^3}$ $f_8: x \mapsto -\frac{2x}{x^2 - 1}$ $f_9: x \mapsto \sqrt{3x + 5}$

Exercice 4:

Étudier les variations des fonctions suivantes :

- 1. On note $f_1: x \mapsto 3(x+4)^2 5$ Démontrer que f_1 atteint son minimum global pour x = -4.
- 2. On note $f_2: x \mapsto -16x^2 96x 147$ Démontrer que f_2 atteint son maximum global pour x = -3.
- 3. On note $f_3: x \mapsto \sqrt{2x-6}$ Démontrer que f_3 atteint son minimum global pour x=3.
- 4. On note $f_4: x \mapsto \frac{1}{x}$ Démontrer que sur [-5; -4], f_4 atteint son minimum local pour x = -5. On pourra étudier les variations de f_4 sur l'intervalle [-5; -4].
- 5. On note $f_5: x \mapsto \frac{-2}{x}$ Démontrer que sur [-5; -4], f_5 atteint son maximum local pour x = -5. On pourra étudier les variations de f_5 sur l'intervalle [-5; -4].

Exercice 5:

On note $f: x \mapsto \frac{7}{x+4}$

- 1. Trouver D_f .
- 2. Démontrer que f est strictement décroissante sur $]-\infty;4[$.
- 3. Démontrer que f est strictement décroissante sur $]4; +\infty[$.
- 4. Que peux-tu en déduire sur l'ordre de $f(-5, 5.10^{-50})$ et $f(-4, 5.10^{-50})$.
- 5. Que peux-tu en déduire sur l'ordre de $f(5, 5.10^{-50})$ et $f(4, 5.10^{-50})$.