Équations et problèmes

Vincent Obaton

Lycée Stendhal de Grenoble

24 août 2009

L'objectif de ce cours est comment résoudre, les différentes équations rencontrées en seconde.

- Les équations du premier degré.
- 2 Les équations de degré supérieur à 1.
- Les équations rationnelles.
- Les autres cas possibles.
- Sésolution des problèmes.

Équations du premier degré

Les équations du premier degré

On nomme équation du premier degré, les équations dont l'exposant de la (ou les) variable(s) est au plus égal à 1. Exemples :

E₁:
$$3x + 7 = 0$$

E₂: $5 - 3x = 7x + 3$
E₃: $\frac{1}{2}x + 7 = \frac{4}{5} - 2x$
E₄: $(3x - 1)(2x + 5) = (7 - 3x)(1 - 2x)$

Contre-Exemples:

$$E_1: x^2 = 5$$

 $E_2: (x-4)^2 - 7 = 0$

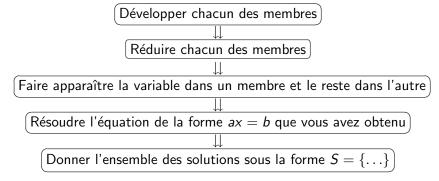
$$E_4$$
: $(3x-1)(2x+5) = (7-5x)(1-2x)$

$$E_5: x^3 = x^2 - 1$$

Chapitre 0 : Équations et problèmes Équations du premier degré

Méthode de résolution des équation du premier degré à une inconnue.

La méthode générale est la suivante :



Équations du premier degré

```
Exemple 01: Résoudre l'équation suivante : 4x - 5 = 7 - 8x 4x - 5 = 7 - 8x est équivalente à : 4x + 8x = 7 + 5 est équivalente à : 12x = 12 est équivalente à : x = 1 L'ensemble des solutions est S = \{1\}. Au lieu d'écrire "est équivalente à", on peut utiliser le symbole mathématique : \Leftrightarrow.
```

Équations du premier degré

```
Exemple 02:
```

Résoudre l'équation suivante :
$$(2x+3)(x-7) = (5-2x)(4-x)$$
 $(2x+3)(x-7) = (5-2x)(4-x)$ est équivalente à : $2x^2 - 14x + 3x - 21 = 20 - 5x - 8x + 2x^2$ est équivalente à : $2x^2 - 11x - 21 = 20 - 6x + 2x^2$ est équivalente à : $-11x + 6x = 21 + 20$ est équivalente à : $-5x = 41$ est équivalente à : $x = -\frac{41}{5} = -8, 2$ L'ensemble des solutions est $S = \left\{-\frac{41}{5}\right\}$.

Au lieu d'écrire "est équivalente à", on peut utiliser le symbole mathématique : \(\Limin \).

Équations de degré supérieur á 1

Équations de degré supérieur á 1

On nomme équation de degré supérieur à 1, les équations dont l'exposant de la (ou les) variable(s) est supérieur strictement à 1. Exemples :

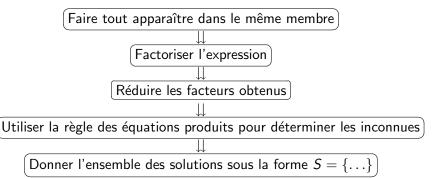
E₁:
$$x^2 = 5$$

E₂: $(x-4)^2 - 7 = 0$
E₄: $(3x-1)(2x+5) = (5-7x)(2x+5)$
E₅: $x^3 = x^2 - 1$

Équations de degré supérieur á 1

Méthode de résolution des équation de degré supérieur à 1 et à une inconnue.

La méthode générale est la suivante :



Équations de degré supérieur à 1

```
Exemple 03: Résoudre l'équation suivante : x^2 = 5 x^2 = 5 est équivalente à : x^2 - 5 = 0 est équivalente à : (x + \sqrt{5})(x - \sqrt{5}) = 0 est équivalente à : x + \sqrt{5} = 0 ou x - \sqrt{5} = 0 est équivalente à : x = -\sqrt{5} ou x = \sqrt{5} L'ensemble des solutions est S = \{-\sqrt{5}; \sqrt{5}\}. Au lieu d'écrire "est équivalente à", on peut utiliser le symbole mathématique : \Leftrightarrow.
```

Équations de degré supérieur á 1

```
Exemple 04:
```

Résoudre l'équation suivante :
$$(3x-1)(2x+5) = (5-7x)(2x+5)$$
 $(3x-1)(2x+5) = (5-7x)(2x+5)$ est équivalente à : $(3x-1)(2x+5) - (5-7x)(2x+5) = 0$ est équivalente à : $(2x+5)[(3x-1) - (5-7x)] = 0$ est équivalente à : $(2x+5)[3x-1-5+7x] = 0$ est équivalente à : $(2x+5)(10x-6) = 0$ est équivalente à : $2(2x+5)(5x-3) = 0$ est équivalente à : $2x+5 = 0$ ou $5x-3 = 0$ est équivalente à : $2x+5 = 0$ ou $5x-3 = 0$ est équivalente à : $5x-5 = 0$ ou $5x-3 = 0$ est équivalente à : $5x-5 = 0$ ou $5x-3 = 0$ est équivalente à : $5x-5 = 0$ ou $5x-3 = 0$ est équivalente à : $5x-5 = 0$ ou $5x-3 = 0$ est équivalente à : $5x-5 = 0$ ou $5x-3 = 0$ est équivalente à : $5x-5 = 0$ ou $5x-3 = 0$ est équivalente à : $5x-5 = 0$ ou $5x-3 = 0$

Au lieu d'écrire "est équivalente à", on peut utiliser le symbole mathématique : \(\Liphi \).

Équations de degré supérieur á 1

Exemple 05:

Résoudre l'équation suivante : $4(x-2)^2 - 7 = 9$

$$4(x-2)^2 - 7 = 9$$

$$\Leftrightarrow 4(x-2)^2 - 16 = 0$$

$$\Leftrightarrow [2(x-2)]^2 - (4)^2 = 0$$

$$\Leftrightarrow [2(x-2)+4][2(x-2)-4]=0$$

$$\Leftrightarrow (2x-4+4)(2x-4-4)=0$$

$$\Leftrightarrow 2x(2x-8)=0$$

$$\Leftrightarrow 4x(x-4)=0$$

$$\Leftrightarrow$$
 4x = 0 ou x - 4 = 0

$$\Leftrightarrow x = 0 \text{ ou } x = 4$$

L'ensemble des solutions est $S = \{0, 4\}$.

Équations rationnelles

Les équations rationnelles

On nomme équation rationnelle, les équations qui contiennent des écritures rationnelles avec des inconnues au dénominateur.

Exemples:

$$E_1: \frac{2x+1}{x-7} = 1$$
 $E_2: 5 = \frac{1}{3x-7}$ $E_3: \frac{5x-1}{2x+3} = \frac{2x+3}{5x-1}$

Remarque importante : Une écriture rationnelle, existe si et seulement si son dénominateur n'est pas nul.

Exemple : $\frac{3x-2}{5x-1}$ existe si et seulement si $5x-1 \neq 0 \Leftrightarrow x \neq \frac{1}{5}$ On dira alors que son domaine d'étude est l'ensemble des réels

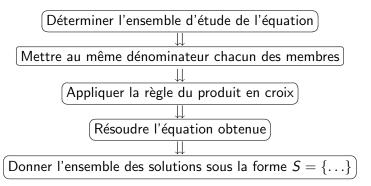
privé de la (ou les) valeur(s) interdite(s) : $\frac{1}{5}$.

On notera :
$$D=\mathbb{R}\setminus\left\{rac{1}{5}
ight\}$$

Chapitre 0 : Équations et problèmes Équations rationnelles

Méthode de résolution des équation rationnelles à une inconnue.

La méthode générale est la suivante :



L'ensemble des solutions est $S = \{-8\}$.

Équations rationnelles

```
Exemple 06:
```

Résoudre l'équation suivante : $\frac{2x+1}{x-7}=1$ L'équation existe si et seulement si $x-7\neq 0 \Leftrightarrow x\neq 7$ L'ensemble d'étude est donc : $D=\mathbb{R}\setminus \{7\}$ $\frac{2x+1}{x-7}=1$ $\Leftrightarrow 2x+1=x-7$ et $x\neq 7$ $\Leftrightarrow 2x-x=-1-7$ et $x\neq 7$ $\Leftrightarrow x=-8$ et $x\neq 7$

- 4ロト 4団ト 4 重ト 4 重ト - 重 - 夕久で

Équations rationnelles

Exemple 07:

Résoudre l'équation suivante :
$$5 = \frac{1}{3x - 7}$$

L'équation existe si et seulement si
$$3x - 7 \neq 0 \Leftrightarrow x \neq \frac{7}{3}$$

L'ensemble d'étude est donc :
$$D = \mathbb{R} \setminus \left\{ \frac{7}{3} \right\}$$

$$5 = \frac{1}{3x - 7}$$

$$\Rightarrow 5(3x - 7) = 1 \text{ et } x \neq \frac{7}{3} \quad \Leftrightarrow 15x - 35 = 1 \text{ et } x \neq \frac{7}{3}$$

$$\Leftrightarrow 15x = 36 \text{ et } x \neq \frac{7}{3} \quad \Leftrightarrow x = \frac{36}{15} \text{ et } x \neq \frac{7}{3}$$

$$\Leftrightarrow 15x = 36 \text{ et } x \neq \frac{7}{3} \quad \Leftrightarrow x = \frac{36}{15} \text{ et } x \neq \frac{7}{3}$$

$$\Leftrightarrow x = \frac{12}{5} \text{ et } x \neq \frac{7}{3}$$

L'ensemble des solutions est $S = \left\{ \frac{12}{5} \right\}$.

Équations rationnelles

Exemple 08:

Résoudre l'équation suivante :
$$\frac{5x-1}{2x+3} = \frac{2x+3}{5x-1}$$
 L'équation existe si et seulement si $2x+3 \neq 0$ et $5x-1 \neq 0$ $\Leftrightarrow x \neq -\frac{3}{2}$ et $x \neq \frac{1}{5}$ L'ensemble d'étude est donc :
$$D = \mathbb{R} \setminus \left\{ -\frac{3}{2}; \frac{1}{5} \right\}$$

$$\frac{5x-1}{2x+3} = \frac{2x+3}{5x-1}$$

$$\Leftrightarrow (5x-1)^2 = (2x+3)^2 \text{ et } x \notin \mathbb{R} \setminus \left\{ -\frac{3}{2}; \frac{1}{5} \right\}$$

$$\Leftrightarrow (5x-1)^2 - (2x+3)^2 = 0 \text{ et } x \notin \mathbb{R} \setminus \left\{ -\frac{3}{2}; \frac{1}{5} \right\}$$

Équations rationnelles

$$\Leftrightarrow (5x - 1 + 2x + 3)(5x - 1 - 2x - 3) = 0 \text{ et } x \notin \mathbb{R} \setminus \left\{-\frac{3}{2}; \frac{1}{5}\right\}$$

$$\Leftrightarrow (7x + 2)(3x - 4) = 0 \text{ et } x \notin \mathbb{R} \setminus \left\{-\frac{3}{2}; \frac{1}{5}\right\}$$

$$\Leftrightarrow 7x + 2 = 0 \text{ ou } 3x - 4 = 0 \text{ et } x \notin \mathbb{R} \setminus \left\{-\frac{3}{2}; \frac{1}{5}\right\}$$

$$\Leftrightarrow x = -\frac{2}{7} \text{ ou } x = \frac{4}{3} \text{ et } x \notin \mathbb{R} \setminus \left\{-\frac{3}{2}; \frac{1}{5}\right\}$$
L'ensemble des solutions est $S = \left\{-\frac{2}{7}; \frac{4}{3}\right\}$.

Chapitre 0 : Équations et problèmes Autres cas d'équations

Les autres cas d'équations

Il reste d'autres cas où il faut faire preuve d'un peu de réflexion et d'intuition pour résoudre certaines équations particulières.

Exemples:

$$E_1: \sqrt{2x-5}=5$$

$$E_2: x^2 - 4x = 32$$

Autres cas d'équations

Exemple 09:

Résoudre l'équation suivante :
$$\sqrt{2x-5} = 5$$

L'équation existe si et seulement si
$$2x - 5 \ge 0 \Leftrightarrow x \ge \frac{5}{2}$$

L'ensemble d'étude est donc :
$$D = \left[\frac{5}{2}; +\infty\right[$$

$$\sqrt{2x-5}=5$$

$$\Leftrightarrow (\sqrt{2x-5})^2 = 25 \text{ et } x \in \left[\frac{5}{2}; +\infty\right[$$

$$\Leftrightarrow 2x - 5 = 25 \text{ et } x \in \left[\frac{5}{2}; +\infty\right[$$

$$\Leftrightarrow 2x = 30 \text{ et } x \in \left[\frac{5}{2}; +\infty\right]$$

$$\Leftrightarrow x = 15 \text{ et } x \in \left[\frac{5}{2}; +\infty\right]$$

L'ensemble des solutions est $S = \{15\}$.

Autres cas d'équations

Exemple 10:

Résoudre l'équation suivante : $x^2 - 4x = 32$

$$x^2 - 4x = 32$$

$$(x-2)^2 - 4 = 32$$

$$\Leftrightarrow (x-2)^2 = 36$$

$$(x-2)^2 - 36 = 0$$

$$(x-2)^2 - (6)^2 = 0$$

$$\Leftrightarrow (x-2-6)(x-2+6) = 0$$

$$\Leftrightarrow (x-8)(x+4)=0$$

$$\Leftrightarrow x - 8 = 0$$
 ou $x + 4 = 0$

$$\Leftrightarrow x = 8 \text{ ou } x = -4$$

L'ensemble des solutions est $S = \{-4, 8\}$.

Chapitre 0 : Équations et problèmes Résolutions des problèmes

Résolutions des problèmes

Il reste donc maintenant à savoir résoudre les problèmes dont les équations permettent de trouver les solutions. La méthode générale est la suivante :

Nommer les inconnues du problème que l'on va résoudre.

Traduire le problème par une équation.

Résoudre l'équation obtenue.

Répondre au problème.

Résolutions des problèmes

Exemple 11:

Le père a 26 ans de plus que son fils.

Dans 10 ans son âge sera le triple de celui de son fils.

Déterminer l'âge du fils et celui du père.

- Nommons les inconnues du problème.
 On note x l'âge du père et y l'âge du fils.
- Traduction du problème par une équation : L'âge du père est donné par les équations : x = y + 26 et x + 10 = 3y donc x = y + 26 et x = 3y - 10 On obtient donc l'équation : y + 26 = 3y - 10
- Second Résolution de l'équation : $y + 26 = 3y 10 \Leftrightarrow 36 = 2y \Leftrightarrow y = 18$
- Solution du problème :
 Le père a 44 ans et le fils 18 ans.

