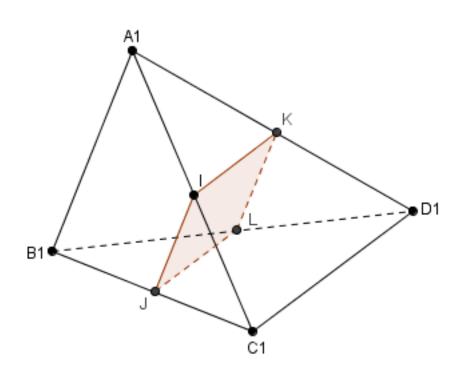

Section plane d'un solide

Exercice 1

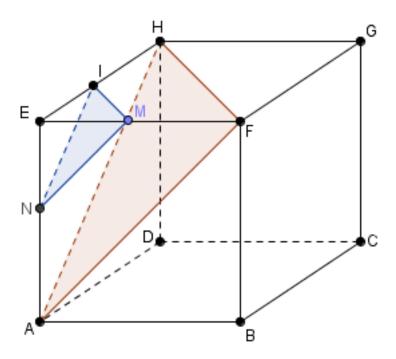
Soit un cube ABCDA'B'C'D', E et F les milieux respectifs de [A'B'] et [B'C']. On mène par A le plan \mathcal{P} parallèle au plan (BEF).


Déterminer et construire les intersections de $\mathcal P$ avec les faces du cube.

Exercice 2

Soit un tétraèdre $A_1B_1C_1D_1$ et I un point de $[A_1C_1]$. Construire la section du tétraèdre par le plan \mathcal{P} passant par I et parallèle à (A_1B_1) et (C_1D_1) .

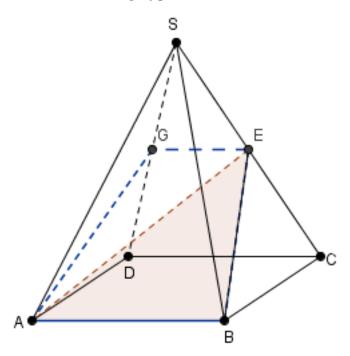
Quelle est la nature de la section obtenue ?



Lycée Stendhal, Grenoble -1-

Exercice 3

Soit un cube ABCDEFGH.


- 1. N est un point de [EH], déterminer la section du cube par le plan \mathcal{P} passant par I et parallèle au plan (AFH).
- 2. Montrer que le point de la section, situé sur [AE], est dans le plan \mathcal{D} médiateur de [HF].

Exercice 4

SABCD est une pyramide dans la base est ABCD est un carré de côté a et dont les quatre faces latérales, SAB, SBC, SCD, et SAD sont des triangles équilatéraux. Soit E le milieu de [SC]. On désigne par \mathcal{D} le plan (ABE).

- 1. Dessiner l'intersection du plan \mathcal{D} avec les faces de la pyramide.
- 2. Calculer en fonction de a les dimensons du polygone intersection de \mathcal{D} avec les faces de la pyramide.

Lycée Stendhal, Grenoble -2-