Exercice 1:

On note f la fonction définie sur \mathbb{R} par $f(x) = -2x^2 + 7x + 2$

- 1. Donner la forme canonique du trinôme f(x)
- 2. Démontrer que f admet un maximum (en utilisant la forme canonique) et donner sa valeur.
- 3. Donner le tableau des variations de f.
- 4. Tracer la courbe de la fonction f.

Exercice 2:

On note f la fonction définie par $f(x) = -3x^2 + 2x + 1$ pour tout x réel. On note C_f la courbe représentative de f dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$

- 1. Préciser la nature de la courbe C_f et les coordonnées de son sommet S.
- 2. Montrer que la courbe C_f coupe l'axe des abscisses en deux points A et B dont on précisera les coordonnées.
- 3. Pour quelles valeurs de x la courbe C_f est-elle située au-dessus de l'axe des abscisses ?

Exercice 3:

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 - 4x + 1$

- \mathbf{a} . Etude de la fonction f
 - 1. Étudier le signe de f.
 - 2. Dresser le tableau de variation de la fonction f.
 - 3. Tracer sa courbe représentative C_f dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$
- **b.** Pour tout nombre $m \in \mathbb{R}$, on considère la droite (D_m) d'équation y = -2x + m
 - 1. Tracer dans le même repère : (D_0) , (D_{-3}) et (D_2)
 - 2. Discuter graphiquement le nombre de point d'intersection entre (D_m) et \mathcal{C}_f suivant la valeur de m
 - 3. Discuter, maintenant par le calcul, le nombre de points d'intersection entre (D_m) et \mathcal{C}_f
 - 4. Donner les coordonnées du point d'intersection dans le cas où il est unique.

Lycée Stendhal, Grenoble -1-