Exercice 1:

Partie 1:

1. Déterminer le polynôme P(x) de degré 3 tel que pour tout réel x on ait

$$P(x+1) - P(x) = x^2$$
 et $P(1) = 0$

Soient a, b, c et d trois réels. On note P le polynôme $P(x) = ax^3 + bx^2 + cx + d$ On sait que $P(x+1) - P(x) = x^2$ or $P(x+1) - P(x) = (a(x+1)^3 + b(x+1)^2 + c(x+1) + d) - (ax^3 + bx^2 + cx + d)$ $= a(x^3 + 3x^2 + 3x + 1) + b(x^2 + 2x + 1) + cx + c + d - ax^3 - bx^2 - cx - d$ $= ax^3 + 3ax^2 + 3ax + a + bx^2 + 2bx + b + cx + c - ax^3 - bx^2 - cx$ $= 3ax^2 + (3a + 2b)x + a + b + c$ Par identification avec x^2 on obtient : $\begin{cases}
a = \frac{1}{3} \\
b = -\frac{1}{3} \\
b = -\frac{1}{3}
\end{cases}$ Donc $P(x) = \frac{1}{3}x^3 - \frac{1}{3}x^2 + \frac{1}{3}x + d$

$$\begin{cases} 3a = 1 \\ 3a + 2b = 0 \\ a + b + c = 0 \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{3} \\ b = -\frac{1}{2} \end{cases} \text{ Donc } P(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x + d \\ c = \frac{1}{6} \end{cases}$$

Pour trouver d on applique P(1)=0 donc $\frac{1}{3}-\frac{1}{2}+\frac{1}{6}+d=0 \Leftrightarrow d=0$ on obtient donc $P(x)=\frac{1}{3}x^3-\frac{1}{2}x^2+\frac{1}{6}x$

2. En déduire que pour tout entier naturel $n \geq 1$, on a

$$1^2 + 2^2 + 3^2 + \dots + n^2 = P(n+1)$$

D'après la question 1, on a : $1^2 = P(2) - P(1)$ $2^2 = P(3) - P(2)$ \vdots $(n-1)^2 = P(n) - P(n-1)$ $n^2 = P(n+1) - P(n)$ donc si on additionne toutes ces égalités, on obtient : $1^2 + 2^2 + 3^2 + \ldots + (n-1)^2 + n^2$ $= P(2) - P(1) + P(3) - P(2) + \ldots + P(n) - P(n-1) + P(n+1) - P(n)$ = P(n+1) - P(1) or P(1) = 0 donc $1^2 + 2^2 + 3^2 + \cdots + n^2 = P(n+1)$

3. En déduire que pour tout entier naturel $n \geq 1$, on a

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

D'après la question précédente, on a $1^2+2^2+3^2+\cdots+n^2=P(n+1)=\frac{1}{3}(n+1)^3-\frac{1}{2}(n+1)^2+\frac{1}{6}(n+1)$ donc $1^2+2^2+3^2+\cdots+n^2=(n+1)\left(\frac{1}{3}(n+1)^2-\frac{1}{2}(n+1)+\frac{1}{6}\right)$ $=(n+1)\left(\frac{1}{3}(n^2+2n+1)-\frac{1}{2}n-\frac{1}{3}\right)$ $=(n+1)\left(\frac{1}{3}n^2+\frac{2}{3}n-\frac{1}{2}n\right)=(n+1)\left(\frac{1}{3}n^2+\frac{1}{6}n\right)$ $=\frac{1}{3}n(n+1)\left(n+\frac{1}{2}\right)=\frac{1}{3}n(n+1)\frac{2n+1}{2}=\frac{1}{6}n(n+1)(2n+1)$ $=\frac{n(n+1)(2n+1)}{6}$ donc $1^2+2^2+3^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}$

Lycée Stendhal, Grenoble -1-

4. En déduire la somme des carrées des 100 premiers entiers naturels non nuls.

D'après la question précédente, on a :
$$1^2 + 2^2 + \dots + 100^2 = \frac{100(101)(201)}{6} = \frac{2030100}{6} = 338350$$

Partie 2:

On considère la fonction f définie sur \mathbb{R} par : $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 + \frac{1}{6}x$ On note C_f sa représentation graphique.

1. Calculer la dérivée f' de f puis étudier son signe.

f est définie sur $\mathbb R$ et dérivable sur $\mathbb R$ comme somme de fonctions dérivables sur $\mathbb R$

De plus
$$f'(x) = \frac{1}{3}(3x^2) - \frac{1}{2}(2x) + \frac{1}{6}(1) = x^2 - x + \frac{1}{6}$$

donc $f'(x) = x^2 - x + \frac{1}{6}$

f' est un trinôme du second degré et $f'(x) = \frac{1}{6}(6x^2 - 6x + 1)$

Étudions le signe de
$$6x^2 - 6x + 1$$

$$\Delta = (-6)^2 - 4(6)(1) = 36 - 24 = 12 = (2\sqrt{3})^2$$

 $\Delta > {\rm donc}$ il y a deux racines réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{6 + 2\sqrt{3}}{12} = \frac{3 + \sqrt{3}}{6} \approx 0,789$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{6 - 2\sqrt{3}}{12} = \frac{3 - \sqrt{3}}{6} \approx 0.211$$

Dressons le tabeau de signe de la fonction f':

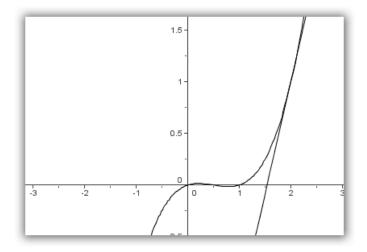
2. Dresser le tableau de variations de la fonction fD'après le tableau de signe précédent, on obtient :

3. Déterminer une équation de la tangente T à C_f au point d'abscisse 2.

L'équation de la tangente est de la forme : y = f'(2)(x-2) + f(2) avec $f'(2)=13_{\overline{6}}$ et f(2)=1

donc on obtient : $y = \frac{13}{6}(x-2) + 1 = \frac{13}{6}x - \frac{10}{3}$ donc l'équation de la tangente est $y = \frac{13}{6}x - \frac{10}{3}$

4. Tracer C_f et T dans un même repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ avec $||\overrightarrow{i}|| = ||\overrightarrow{j}|| = 2$ cm



Exercice 2:

Le but de cet exercice est de déterminer les solutions polynômiales du système (S):

(S)
$$\begin{cases} P(x) - \frac{x}{3}P'(x) + P''(x) = 0 \\ P'''(x) = 6 \end{cases}$$

où l'inconnue est le polynome P, P'' représente la dérivée de P' et P''' la dérivée de P''

- 1. Quel doit être le degré du polynôme P?

 On utilise le fait que si on dérive un polynôme de degré n alors on obtient un polynôme de degré n-1.

 Comme P'''(x) est une constante alors P''(x) est de degré 1, d'où P'(x) est de degré 2 et donc P(x) est de degré 3.
- 2. Démontrer que le coefficient du terme de degré 3 est 1. Puisque P est un polynôme de degré 3 alors il existe $a,\,b,\,c$ et d quatre réels tels que :

$$P(x) = ax^3 + bx^2 + cx + d$$

donc

- $P(x) = ax^3 + bx^2 + cx + d$
- $P'(x) = 3ax^2 + 2bx + c$
- P''(x) = 6ax + 2b
- P'''(x) = 6a

Or
$$P'''(x) = 6$$
 donc $6a = 6$ donc $a = 1$
on a donc $P(x) = x^3 + bx^2 + cx + d$

3. Exprimer $P(x) - \frac{x}{3}P'(x) + P''(x)$ en fonction de x.

Essayons de traduire le fait que : $P(x) - \frac{x}{3}P'(x) + P''(x) = 0$ $P(x) - \frac{x}{3}P'(x) + P''(x) = (x^3 + bx^2 + cx + d) - \frac{x}{3}(3x^2 + 2bx + c) + 6x + 2b$ $= x^3 + bx^2 + cx + d - x^3 - \frac{2b}{3}x^2 - \frac{c}{3}x + 6x + 2b$ $= \frac{1}{3}bx^2 + \left(\frac{2}{3}c + 6\right)x + (d + 2b)$ $\operatorname{donc} \left[P(x) - \frac{x}{3}P'(x) + P''(x) = \frac{1}{3}bx^2 + \left(\frac{2}{3}c + 6\right)x + (d + 2b)\right]$

4. Conclure. On a donc $\frac{1}{3}bx^2 + \left(\frac{2}{3}c + 6\right)x + (d+2b) = 0$ par identification on trouve :

$$\begin{cases} \frac{1}{3}b = 0\\ \frac{2}{3}c + 6 = 0\\ d + 2b = 0 \end{cases} \Leftrightarrow \begin{cases} b = 0\\ c = -9\\ d = 0 \end{cases}$$
 On obtient donc $P(x) = x^3 - 9x$

* * Bonne année * *

Lycée Stendhal, Grenoble -3-