Exercice 1:

On considère la fonction f définie sur $\mathbb{R} \setminus \{-1\}$ par $f(x) = \frac{x^2 + 7x + 10}{x + 1}$ On note C_f sa représentation graphique dans un repère $(O; \overrightarrow{i}; \overrightarrow{j})$. On prendra comme unités 1 cm par axe.

- 1. Trouver les coordonnées du point A, intersection entre \mathcal{C}_f et l'axe des ordonnées.
- 2. Trouver les coordonnées des points B et C, intersection entre \mathcal{C}_f et l'axe des abscisses.
- 3. Démontrer que $\forall x \in \mathbb{R} \setminus \{-1\}$ on a $f(x) = x + 6 + \frac{4}{x+1}$
- 4. Etudier les limites aux bornes du domaine de définition.
- 5. En déduire que la courbe C_f admet une asymptote verticale (D) dont on précisera l'équation.
- 6. C_f admet-elle une asymptote horizontale?
- 7. Démontrer que la droite (Δ) d'équation y = x + 6 est asymptote oblique à la courbe C_f en $+\infty$ et en $-\infty$.
- 8. Préciser la position relative entre \mathcal{C}_f et (Δ) .
- 9. Déterminer une équation des tangentes (T_1) et (T_2) aux points de la courbe C_f d'abscisses respectives -2 et -3.
- 10. Tracer, dans le repère, (D), (Δ) , (T_1) , (T_2) , les tangentes horizontales et \mathcal{C}_f .

Exercice 2:

Un promeneur marcha 5 km en direction de l'Est puis 2 km en direction du Nord-Est. Surpris par le mauvais temps il retourna directement à son point de départ en courant pendant 30 minutes.

À quelle vitesse a-t-il couru?

Lycée Stendhal, Grenoble -1-