Fiche 1

Les trinômes du second degré.

1 Définitions

1.1 Les trinômes du second degré

Un trinôme du second degré est un polynôme de degré 2 de la forme :

$$P(x) = ax^2 + bx + c$$
 avec $a \in \mathbb{R}^*, b \in \mathbb{R}$ et $c \in \mathbb{R}$

1.2 Forme canonique

Si P est un polynôme tel que $P(x)=ax^2+bx+c$ avec $a\in\mathbb{R}^*,\,b\in\mathbb{R}$ et $c\in\mathbb{R}$ alors on peut écrire P sous forme canonique :

$$P(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right]$$
 (Forme 1)

Ou

$$P(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} \qquad \text{(Forme 2)}$$

Il n'est pas utile de savoir par ullet ces deux formules. Il faut surtout savoir retrouver les formes canoniques par le calcul.

2 Les équations du second degré à une inconnue

Soit $ax^2 + bx + c = 0$ une équation du second degré.

Si
$$a \neq 0$$
, $b \neq 0$ et $c = 0$

alors
$$ax^2 + bx = 0 \Leftrightarrow x(ax + b) = 0$$

Il y a donc deux solutions dans \mathbb{R} , $x_1 = 0$ et $x_2 = -\frac{b}{a}$

Si
$$a \neq 0$$
, $b = 0$ et $c \neq 0$

alors on doit résoudre : $ax^2 + c = 0$

 \longrightarrow Si $\frac{c}{a} > 0$ alors il n'y a aucune solution dans \mathbb{R} et $S = \emptyset$

Si
$$\frac{c}{a} < 0$$
 alors il y a deux solutions dans \mathbb{R} , $x_1 = -\sqrt{\left|\frac{c}{a}\right|}$ et $x_2 = \sqrt{\left|\frac{c}{a}\right|}$

Lycée Stendhal, Grenoble -1-

Si
$$a \neq 0, b = 0 \text{ et } c = 0$$

Alors on doit résoudre : $ax^2 = 0$

Il y a donc une solution unique dans \mathbb{R} , x = 0

Si $a \neq 0$, $b \neq 0$ et $c \neq 0$

On note **Discriminant du trinôme** le nombre $\Delta = b^2 - 4ac$

Alors il y a trois cas possibles pour résoudre l'équation : $ax^2 + bx + c = 0$

- Premier cas : Si $\Delta = 0$, il y a qu'une seule solution dans \mathbb{R} et $S = \{-\frac{b}{2a}\}$
- \longrightarrow Deuxième cas : Si $\Delta < 0$, il n'y a pas de solution dans \mathbb{R} et $S = \emptyset$
- Troisième cas : Si $\Delta > 0$, Il y a donc deux solutions dans \mathbb{R} , $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a}$

3 Factorisation des trinômes du second degré

Théorème (Factorisation des trinômes du second degré)

On note $ax^2 + bx + c$ un trinôme du second degré avec $a \neq 0$, $b \neq 0$ et $c \neq 0$

On note $\Delta = b^2 - 4ac$, le discriminant du trinôme

Alors

- \Rightarrow Si $\Delta = 0$ alors $ax^2 + bx + c = a(x x_1)^2$ avec $x_1 = -\frac{b}{2a}$
- Si $\Delta > 0$ alors $ax^2 + bx + c = a(x x_1)(x x_2)$ avec $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_1 = \frac{-b \sqrt{\Delta}}{2a}$
- \rightarrow Si $\Delta < 0$ alors on ne peut pas factoriser $ax^2 + bx + c$ dans \mathbb{R}

4 Déterminer le signe d'un trinôme du second degré

ightharpoonup Si $\Delta = 0$ alors $ax^2 + bx + c = a(x - x_1)^2$ avec $x = \frac{-b}{2a}$

Donc le tableau de signe de $ax^2 + bx + c$ est :

$$x$$
 $-\infty$ x_1 $+\infty$ $a(x-x_1)^2$ Signe de a 0 Signe de a

Si $\Delta > 0$ alors $ax^2 + bx + c = a(x - x_1)(x - x_2)$ avec $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$. Donc le tableau de signe de $ax^2 + bx + c$ est :

$$x$$
 $-\infty$ x_2 x_1 $+\infty$ $a(x-x_1)(x-x_2)$ Signe de a 0 Signe de $-a$ 0 Signe de a

Lycée Stendhal, Grenoble -2-

$$\Rightarrow$$
 Si $\Delta < 0$ alors $ax^2 + bx + c = a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{|\Delta|}{4a^2} \right]$

donc $ax^2 + bx + c$ est toujours du signe de a et ne s'annule pas sur \mathbb{R} .

$$\begin{array}{c|cc} x & -\infty & +\infty \\ \hline ax^2 + bx + c & \text{Signe de a} \end{array}$$

5 Racines des polynômes de degré supérieur à 2

Théorème (Factorisation)

Si α est une racine du polynôme P alors il existe un unique polynôme Q tel que :

$$\forall x \in \mathbb{R}$$
, $P(x) = (x - \alpha) \times Q(x)$ avec $d^{\circ}Q = d^{\circ}P - 1$

6 Les fonctions polynômes du second degré

On note f la fonction définie sur \mathbb{R} par $f(x) = ax^2 + bx + c$ avec $a \neq 0$

• Si a > 0 alors le tableau de variation de f est :

$$\begin{array}{c|cccc} x & -\infty & \frac{-b}{2a} & +\infty \\ \hline f(x) & \searrow & f\left(\frac{-b}{2a}\right) & \nearrow & \end{array}$$

• Si a < 0 alors le tableau de variation de f est :

$$\begin{array}{c|cccc} x & -\infty & \frac{-b}{2a} & +\infty \\ \hline f(x) & & & f\left(\frac{-b}{2a}\right) & \searrow \end{array}$$

• La fonction $f: x \mapsto ax^2 + bx + c$ admet un extrémum en $x = \frac{-b}{2a}$

La représentation graphique de la fonction $f:x\mapsto ax^2+bx+c$ est une parabole de sommet $S\left(\frac{-b}{2a};f\left(\frac{-b}{2a}\right)\right)$ tournée vers le haut si a>0 et tournée vers le bas

si a < 0. Cette parabole admet pour axe de symétrie la droite d'équation $x = -\frac{b}{2a}$

Lycée Stendhal, Grenoble -3-