2006 - 2007

1 Homothétie de centre O et de rapport k

Définition:

L'homothétie de centre O et de rapport k ($k \in \mathbb{R}^*$) est une application du plan dans lui même qui, à tout point M, associe le point M' tel que :

$$\overrightarrow{OM'} = k.\overrightarrow{OM}$$

On note : $M' = h_{(O;k)}(M)$

Exemples:

1. Construire A' l'image de A par l'homothétie de centre O et de rapport 3 :

2. Construire A^\prime l'image de A par l'homothétie de centre O et de rapport -3 :

3. Construire A' l'image de A par l'homothétie de centre O et de rapport 1 :

4. Construire A' l'image de A par l'homothétie de centre O et de rapport -1 :

5. Construire A' l'image de A par l'homothétie de centre O et de rapport $\frac{5}{2}$:

Quelques propriétés

Propriété 1 :

Si $M' = h_{(O:k)}(M)$ alors M, M' et O sont

Démonstration:

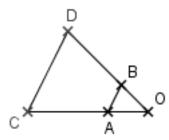
$$\overrightarrow{OM'} = \overrightarrow{k}.\overrightarrow{OM}$$
 donc

 \overrightarrow{OM} et $\overrightarrow{OM'}$ sont

Propriété 2 :

Si
$$A' = h_{(O;k)}(A)$$
 et $B' = h_{(O;k)}(B)$ alors

$$\overrightarrow{A'B'} = \dots$$



$$\underline{D\acute{e}monstration} : \atop A'B' = OB' - OA' = \dots$$

donc $\overrightarrow{A'B'} = \dots$

Propriété 3:

Les points invariants de $h_{(O:k)}$ sont :

Si $k = 1, \ldots$

Si $k \neq 1, \ldots$

Démonstration:

M est invariant si $\overrightarrow{OM} = k.\overrightarrow{OM}$ donc $.....\overrightarrow{OM} = \overrightarrow{0}$

donc ou

Propriété 4:

L'application réciproque de $h_{(O:k)}$ est \dots donc $h_{(O:k)}^{-1} = \dots$

Démonstration:

On a $OM' = k.\overrightarrow{OM}$ donc $\overrightarrow{OM} = \dots$

Propriété 5:

La composée de deux homothéties $h_{(O:k)}$ et $h_{(O:k')}$ est :

 $h_{(O:k)} \circ h_{(O:k')} = \dots$

 $\overrightarrow{OM''} = k'.(\dots) = \dots \overrightarrow{OM}$