Exercice 1:

Déterminer la forme développée, la forme canonique et la forme factorisée des fonctions polynômes ci-dessous :

1.
$$f: x \longmapsto 2x^2 + 2x - 4$$

2.
$$f: x \longmapsto 4(x-3)^2 - 5$$

3.
$$f: x \longmapsto 2\left(x - \frac{1}{2}\right)(2x + 3)$$

4.
$$f: x \longmapsto 3x^2 - 1, 2x + 0.09$$

5.
$$f: x \longmapsto x^2$$

6.
$$f: x \longmapsto x^2 + \sqrt{3}x - 6$$

7.
$$f: x \longmapsto x^2 - 5x$$

8.
$$f: x \longmapsto 5(x-1)^2$$

Exercice 2:

- 1. On note f la fontion $f: x \longmapsto \frac{1}{2}x^2 3x + 2$
 - (a) Donner le domaine de définition de f.
 - (b) Déterminer a, α et β trois réels tels que $f(x) = a(x \alpha)^2 + \beta$.
 - (c) Dresser le tableau des variations de f.
 - (d) Factoriser f(x)
 - (e) Dresser le tableau des signes de f(x)
 - (f) Déterminer les coordonnées des points d'intersection entre \mathcal{C}_f et les axes du repère.
 - (g) Tracer C_f dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$
- 2. On note f la fontion $f: x \longmapsto \frac{10x + 22}{2x + 5}$
 - (a) Donner le domaine de définition de f.
 - (b) Déterminer α et β deux réels tels que $f(x) = \alpha + \frac{\beta}{2x+5}$.
 - (c) Dresser le tableau des signes de f(x)
 - (d) Déterminer les coordonnées des points d'intersection entre \mathcal{C}_f et les axes du repère.
 - (e) A l'aide de votre calculatrice et des résultats ci-dessus, tracer la courbe représentative de f.

Exercice 3:

Soient f et g les fonctions définies sur \mathbb{R} par :

$$f: x \longmapsto x^2 - 4x - 5$$
 et $g: x \longmapsto -2x^2 + 4x - 2$

- 1. Déterminer la forme canonique de f et g.
- 2. Dresser le tableau des variations de f et g.
- 3. On note Δ_{fg} la fonction $\Delta_{fg}: x \longmapsto f(x) g(x)$
 - (a) Exprimer $\Delta_{fq}(x)$ en fonction de x et déterminer sa forme canonique.
 - (b) Factoriser $\Delta_{fq}(x)$.
 - (c) Déterminer, par le calcul, les coordonnées des points d'intersection de \mathcal{C}_f et \mathcal{C}_q .
 - (d) Etudier la position relative de C_f et C_g .
- 4. Tracer C_f et C_g dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$