Exercice 1:

Pour chacune des fonctions ci-dessous, trouver le nombre dérivé (s'il existe) de la fonction au point d'abscisse $x_0 = a$ et l'équation de la tangente à la courbe représentative de f au point d'abscisse x_0

$$f(x) = 3x - 7 \text{ pour } a = 1$$

$$g(x) = 5x^{2} - 7 \text{ pour } a = -1$$

$$w(x) = (2x + 3)(x - 1) \text{ pour } a = 1$$

$$g(x) = 5x^{2} - 7 \text{ pour } a = -1$$

$$v(x) = \frac{3}{4}x - 2x + 1 \text{ pour } a = -2$$

$$i(x) = 4(2x - 7)^{2} - 9 \text{ pour } a = 0$$

$$k(x) = \frac{5x - 2}{4x + 1} \text{ pour } a = 5$$

$$k(x) = \frac{5x - 2}{4x + 1} \text{ pour } a = 5$$

$$n(x) = \sqrt{3x - 5} \text{ pour } a = 4$$

$$n(x) = \sqrt{7 - 2x} \text{ pour } a = -1$$

$$o(x) = \frac{1}{\sqrt{5x - 2}} \text{ pour } a = 1$$

Exercice 2:

Pour chacune des fonctions ci-dessous, trouver l'ensemble de définition, l'ensemble de dérivation et la fonction dérivée.

$$\begin{split} f(x) &= -2x^2 + 5x^3 - \sqrt{2}x + \pi \\ w(x) &= \frac{1}{3x^2 + 1} \\ y(x) &= (5x + 1)^4 \\ y(x) &= (2x - 1)(3x^2 + 1) \\ y(x) &= (2x - 1)(3$$

Exercice 3:

On note f la fonction définie par $f: x \longmapsto 3x^5 - 25x^3 + 60x$

- 1. Déterminer son domaine de définition.
- 2. Déterminer f'.
- 3. Déterminer les extremums de la fonction f.
- 4. Déterminer les variations de la fonction f.
- 5. Déterminer l'équation de (Δ) la tangente en C_f au point d'abscisse a=0.
- 6. Tracer (C_f) et (Δ) dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ sur l'intervalle [-2.5; 2.5].

Correction de l'exercice 1 :

1.
$$f'(1) = 3$$
 et $y = 3x - 7$

2.
$$g'(-1) = -10$$
 et $y = -10x - 13$

3.
$$h'(0) = -36$$
 et $y = -36x - 27$

4.
$$w'(1) = 5$$
 et $y = 5x - 5$

5.
$$v'(-2)$$
 et $y = -5x - 2$

6.
$$i'(0) = -112$$
 et $y = -112x + 187$

7.
$$j'(1) = -6$$
 et $y = -6x + 4$

8.
$$k'(5) = \frac{13}{441}$$
 et $y = \frac{13}{441}x + \frac{418}{441}$

9.
$$l'(-1) = \frac{167}{160}$$
 et $y = \frac{167}{160}x + \frac{287}{160}$

10.
$$m'(4) = \frac{3\sqrt{7}}{14}$$
 et $y = \frac{3\sqrt{7}}{14}x + \frac{2\sqrt{7}}{14}$

11.
$$n'(-1) = -\frac{1}{3}$$
 et $y = -\frac{1}{3}x + \frac{8}{3}$

12.
$$o'(1) = -\frac{5\sqrt{3}}{18}$$
 et $y = -\frac{5\sqrt{3}}{18}x + \frac{11\sqrt{3}}{18}$

Correction de l'exercice 2 :

1.
$$D_f = \mathbb{R}$$
 $D_{f'} = \mathbb{R}$ $f'(x) = 15x^2 - 4x - \sqrt{2}$

2.
$$D_q = \mathbb{R}$$
 $D_{q'} = \mathbb{R}$ $g'(x) = -14 + 6x$

3.
$$D_h = \mathbb{R}$$
 $D_{h'} = \mathbb{R}$ $h'(x) = -18x^2 - 6x - 2$

4.
$$D_w = \mathbb{R}$$
 $D_{w'} = \mathbb{R}$ $w'(x) = \frac{-6x}{(3x^2 + 1)^2}$

5.
$$D_v = \mathbb{R}$$
 $D_{v'} = \mathbb{R}$ $v'(x) = 20(5x+1)^3$

6.
$$D_i =]-\infty;1]$$
 $D_{i'} =]-\infty;1[$ $i'(x) = -\frac{1}{2\sqrt{-x+1}}$

7.
$$D_j = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$$
 $D_{j'} = \mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ $j'(x) = \frac{8x^2 - 8x}{(2x - 1)^2}$

8.
$$D_k = [1; +\infty[$$
 $D_{k'} =]1; +\infty[$ $k'(x) = \frac{x(5x-4)}{2\sqrt{x-1}}$

9.
$$D_l = \mathbb{R} \setminus \left\{ \frac{4}{3} \right\}$$
 $D_{l'} = \mathbb{R} \setminus \left\{ \frac{4}{3} \right\}$ $l'(x) = \frac{7}{(3x-4)^2}$

10.
$$D_m = \mathbb{R}$$
 $D_{m'} = \mathbb{R}$ $m'(x) = \frac{4x}{(x^2 + 1)^2}$

11.
$$D_n = \mathbb{R} \setminus \{0; 1\}$$
 $D_{n'} = \mathbb{R} \setminus \{0; 1\}$ $n'(x) = \frac{10(x^2 - 6x + 3)}{(x^2 - x)^2}$

12.
$$D_o = D_{o'} = \mathbb{R} \setminus \left\{ -\frac{\pi}{2} + 2k\pi; \frac{\pi}{2} + 2k\pi \text{ avec } k \in \mathbb{Z} \right\}$$
 $o'(x) = 2(1 + \tan^2 x) = \frac{2}{\cos^2 x}$

13.
$$D_p = D_{p'} = \mathbb{R} \setminus \{2k\pi; -\pi + 2k\pi \text{ avec } k \in \mathbb{Z}\}$$
 $p'(x) = -\frac{1}{\sin^2 x}$

14.
$$D_q = D_{q'} = \mathbb{R}$$
 $q'(x) = 2(1 - 2\sin^2 x) = 2(2\cos^2 x - 1)$

15.
$$D_r = D_{r'} = \mathbb{R}$$
 $r'(x) = 3\sin(-3x + 5)$

16.
$$D_s = \left[-\infty; \frac{5}{3} \right]$$
 $D_{s'} = \left[-\infty; \frac{5}{3} \right]$ $s'(x) = -\frac{3}{2\sqrt{-3x+5}}$

17.
$$D_t = \left[\frac{3}{2}; +\infty\right[\qquad D_{t'} = \left]\frac{3}{2}; +\infty\right[\qquad t'(x) = \frac{3(x-1)}{\sqrt{2x-3}}$$

18.
$$D_u = D_{u'} = \mathbb{R}$$
 $u'(x) = \frac{x^2 - 2}{x^2}$

19.
$$D_v = D_{v'} =]0; +\infty[$$
 $v'(x) = -\frac{1 + 42x^3\sqrt{x}}{2x\sqrt{x}}$

20.
$$D_w = D_{w'} =]0; +\infty[$$
 $w'(x) = \frac{3}{2\sqrt{x}} - \frac{6}{x^3} + \frac{5}{x^2}$

21.
$$D_z = D_{z'} = \mathbb{R} \setminus \{0\}$$
 $z(x) = 40x^9 - 30x^5 - \frac{7}{x^8}$

Exercice 3:

On note f la fonction définie par $f: x \longmapsto 3x^5 - 25x^3 + 60x$

- 1. f(x) existe pour toutes les valeurs de x de \mathbb{R} donc $D_f = \mathbb{R}$.
- 2. f est définie et dérivable sur \mathbb{R} et $f'(x) = 15x^4 75x^2 + 60$
- 3. Les extrémums sont les f(a) tels que f'(a) = 0

Il faut donc résoudre f'(x) = 0

1 et -1 sont des racines évidentes du polynôme f'(x) donc d'après le théorème de décomposition des polynômes, il existe Q un polynôme de degré 2 tel que :

$$f'(x) = (x-1)(x+1) \times Q(x)$$

Il existe $a \in \mathbb{R}$, $b \in \mathbb{R}$ et $c \in \mathbb{R}$ tels que $f'(x) = (x^2 - 1)(ax^2 + bx + c)$

 $f'(x) = ax^4 + bx^3 + (c-a)x^2 - bx - c$ et par identification avec $f'(x) = 15x^4 - 75x^2 + 60$ on trouve : $f'(x) = (x^2 - 1)(15x^2 - 60)$

$$f'(x) = (x^2 - 1)(15x^2 - 60)$$

donc $f'(x) = 0 \Leftrightarrow x = 1$ ou x = -1 ou x = 2 ou x = -2.

Les extrémums sont donc :

- Pour x = 1, f(1) = 3 25 + 60 = 38
- Pour x = -1, $f(-1) = 3(-1)^5 25(-1)^3 + 60(-1) = -36$
- Pour x = 2, $f(2) = 3(2)^5 25(2)^3 + 60(2) = 16$
- Pour x = -2, $f(-2) = 3(-2)^5 25(-2)^3 + 60(-2) = -16$
- 4. Cherchons le signe de f'(x) puis les variations de f: f'(x) = 15(x+1)(x-1)(x-2)(x+2)

\overline{x}	$-\infty$		-2		-1		1		2	
$-+\infty$										
x-1		_		_		_	0	+		+
x+1		_		_	0	+		+		+
x-2		_		_		_		_	0	+
x+2		_	0	+		+		+		+
f'(x)		+	0	_	0	+	0	_	0	+
			-16				38			
f(x)		7		\searrow		7		\searrow		7
					-36				16	

- 5. L'équation de (Δ) est de la forme : y=f'(0)x+f(0)Or f'(0)=15(0-1)(0+1)(0+2)(0-2)=60 et f(0)=0 donc y=60x
- 6. Représentation graphique de f et de Δ :

