Exercice 1:

On note $f: x \mapsto x^2 - 3x + 1$ et $g: x \mapsto x^2 + x - 6$

- 1. Démontrer que pour tout $x \in \mathbb{R}$ alors $x^2 + x 6 = (x 2)(x + 3)$.
- 2. Déterminer les ensembles de définition de f et q.
- 3. Définir les fonction $h_1 = f + g$ et $h_2 = f g$.
- 4. Définir les fonction $k_1 = f \times g$ et $k_2 = \frac{f}{g}$.

Exercice 2:

On note $f: x \mapsto -2x^2 + 20x - 47$ et $h: x \mapsto x^2$.

- 1. Démontrer que pour tout $x \in \mathbb{R}$ alors f(x) = 3 2h(x 5).
- 2. En déduire les variations de f.
- 3. En déduire les variations de $g_1 = f + 3$.
- 4. En déduire les variations de $g_2 = f 3$.
- 5. En déduire les variations de $g_3 = 3f$.
- 6. En déduire les variations de $g_4 = -3f$.
- 7. En déduire les variations de $g_5 = 8f 6$.
- 8. En déduire les variations de $g_6 = -8f + 6$.
- 9. Décrire la courbe représentative de la fonction f.
- 10. Décrire la courbe représentative de la fonction q_6 .
- 11. Décrire la courbe représentative de la fonction $x \mapsto g_4(x-5)$.

Exercice 3: On note
$$g: x \mapsto \frac{8x+13}{2x+4}$$

- 1. Démontrer que pour tout $x \neq -2$, on a $f(x) = 4 \frac{3}{2x + 4}$.
- 2. En déduire le tableau des variations de f.
- 3. Décrire la courbe représentative de la fonction f.

Exercice 4:

- 1. On note f la fonction définie sur \mathbb{R} telle que $f(x) = 2x^3 6x^2 + 7x 3$. Trouver a,b et c trois réels tels que $f(x) = (x-1)(ax^2 + bx + c)$.
- 2. On note g la fonction définie sur $\mathbb{R} \setminus \{-4; 1\}$ telle que $g(x) = \frac{x-6}{x^2+3x-4}$. Trouver a et b deux réels tels que $g(x) = \frac{a}{x+4} + \frac{b}{x-1}$

Lycée Stendhal, Grenoble -1-