LE PRODUIT SCALAIRE

(En première S)

Dernière mise à jour : Jeudi 4 Janvier 2007

Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 2006-2007)

Table des matières

1	Grille d'au	Grille d'autoévaluation						
2	Définition et Propriétés 2.1 Définition du produit scalaire 2.2 Produit scalaire et commutativité 2.3 Produit scalaire et vecteurs colinéaires 2.4 Produit scalaire et vecteurs orthogonaux							
3	3.1 Définit 3.2 Retour	tion géométrique ion géométrique du produit scalaire	6					
4	4.1 Distrib 4.2 Linéari	alaire et opérations outivité du produit scalaire	7					
5	5.1 Coordo 5.2 Expres	analytique du produit scalaire onnées d'un vecteur	9					
6	Les différe	ntes expressions du produit scalaire	9					
7	7.2 Equation 7.3 Equation 7.3.1 7.3.2 7.4 Formula 7.5 Lignes 7.5.1 7.5.2	le d'Al-Kashi	10 10 11 11 12 13 13					
	7.6 De nou 7.6.1 7.6.2 7.6.3	Lignes de niveau du type $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$	13 14 14 15 15 15					

1 Grille d'autoévaluation

- Cocher A si vous pensez maîtriser parfaitement ce savoir ou ce savoir-faire.
- Cocher EA si vous pensez maîtriser partiellement ce savoir ou ce savoir-faire.
- Cocher NA si vous pensez ne pas maîtriser ce savoir ou ce savoir-faire.

					Savoir, Savoirs-faire et compétences	A	EA	NA
Α	G	1	0	1	Connaître et savoir utiliser la définition du produit scalaire			
Α	G	1	0	2	Connaître le produit scalaire pour deux vecteurs colinéaires			
A	G	1	0	3	Connaître le produit scalaire pour deux vecteurs orthogonaux			
Α	G	1	0	4	Calculer le carré scalaire d'un vecteur			
Α	G	1	0	5	Exprimer le produit scalaire à l'aide d'un projeté orthogonal			
Α	G	1	0	6	Savoir développer ou factoriser des expressions avec produits scalaires			
Α	G	1	0	7	Calculer la norme d'une somme ou d'une différence de deux vecteurs			
Α	G	1	0	8	Calculer le produit d'une somme par la différence de deux vecteurs			
Α	G	1	0	9	Calculer le produit scalaire de deux vecteurs avec leurs coordonnées			
Α	G	1	0	10	Connaître et savoir utiliser les différentes expression du produit scalaire			
A	G	1	0	11	Connaître et savoir utiliser la formule d'Al-Kashi			
Α	G	1	0	11	Savoir calculer l'équation cartésienne d'une droite perpendiculaire à une autre			
Α	G	1	0	12	Savoir calculer l'équation cartésienne d'un cercle			
Α	G	1	0	13	Savoir décrire un cercle connaissant son équation cartésienne			
Α	G	1	0	14	Connaître et savoir utiliser les formules de la médiane			
Α	G	1	0	15	Décrire l'ensemble des points M vérifiant $MA^2 + MB^2 = k$			
A	G	1	0	16	Décrire l'ensemble des points M vérifiant $MA^2 - MB^2 = k$			
Α	G	1	0	17	Décrire l'ensemble des points M vérifiant $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$			
Α	G	1	0	18	Connaître et savoir utiliser les formules d'addition trigonométrique			
Α	G	1	0	19	Connaître et savoir utiliser les formules de linéarisation trigonométrique			
Α	G	1	0	20	Connaître et savoir utiliser les formules de duplication trigonométrique			
Α	G	1	0	21	Connaître et savoir utiliser les formules sur l'aire d'un triangle			
Α	G	1	0	22	Connaître et savoir utiliser la formule des sinus			

2 Définition et Propriétés

Le plan est muni d'un repère orthonormal $(O, \overrightarrow{i}, \overrightarrow{j})$. On note \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls.

2.1 Définition du produit scalaire

Définition 1

On appelle **produit scalaire** des vecteurs \overrightarrow{u} et \overrightarrow{v} le nombre réel noté $\overrightarrow{u}\cdot\overrightarrow{v}$ défini par :

$$\overrightarrow{u} \cdot \overrightarrow{v} = \parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel \times \widehat{\cot}(\widehat{\overrightarrow{u}, \overrightarrow{v}})$$

Remarque:

 \longrightarrow Si l'un des vecteurs est nul alors $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

2.2 Produit scalaire et commutativité

Propriété 1

$$\forall \overrightarrow{u}, \forall \overrightarrow{v}$$
 on a $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$

Démonstration:

 $\forall \overrightarrow{u}, \forall \overrightarrow{v} \text{ on a } \cos(\widehat{\overrightarrow{u},\overrightarrow{v}}) = \cos(\widehat{\overrightarrow{v},\overrightarrow{u}}) \\ \operatorname{donc} \ \overrightarrow{u} \cdot \overrightarrow{v} = \parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel \times \cos(\widehat{\overrightarrow{u},\overrightarrow{v}}) = \parallel \overrightarrow{v} \parallel \times \parallel \overrightarrow{u} \parallel \times \cos(\widehat{\overrightarrow{v},\overrightarrow{u}}) = \overrightarrow{v} \cdot \overrightarrow{u}$

2.3 Produit scalaire et vecteurs colinéaires

Propriété 2

On note \overrightarrow{u} et \overrightarrow{v} deux vecteurs colinéaires. Il existe donc $\lambda \in \mathbb{R}$ tel que $\overrightarrow{u} = \lambda \overrightarrow{v}$.

Si $\lambda>0$ (\overrightarrow{u} et \overrightarrow{v} dans le même sens) alors $\overrightarrow{u}\cdot\overrightarrow{v}=\parallel\overrightarrow{u}\parallel\times\parallel\overrightarrow{v}\parallel$

Si $\lambda<0$ (\overrightarrow{u} dans le sens contraire de \overrightarrow{v}) alors $\overrightarrow{u}\cdot\overrightarrow{v}=-\parallel\overrightarrow{u}\parallel\times\parallel\overrightarrow{v}\parallel$

Démonstration:

On note \overrightarrow{u} et \overrightarrow{v} deux vecteurs colinéaires. Il existe donc $\lambda \in \mathbb{R}$ tel que $\overrightarrow{u} = \lambda \overrightarrow{v}$.

- $\overset{\cdot}{\text{Si }}\lambda > 0 \text{ alors } \cos(\widehat{\overrightarrow{u}}, \overrightarrow{v}) = 1 \text{ donc } \overrightarrow{u} \cdot \overrightarrow{v} = \parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel \times \cos(\widehat{\overrightarrow{u}}, \overrightarrow{v}) = \parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel$
- $\text{Si } \lambda < 0 \text{ alors } \cos(\widehat{\overrightarrow{u}}, \overrightarrow{v}) = -1 \text{ donc } \overrightarrow{u} \cdot \overrightarrow{v} = \parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel \times \cos(\widehat{\overrightarrow{u}}, \overrightarrow{v}) = \parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel$

2.4 Produit scalaire et vecteurs orthogonaux

Propriété 3

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls, alors $\overrightarrow{u} \perp \overrightarrow{v} \Leftrightarrow \overrightarrow{u} \cdot \overrightarrow{v} = 0$

4

Démonstration:

(⇒):

Si $\overrightarrow{u} \perp \overrightarrow{v}$ alors $(\overrightarrow{u}, \overrightarrow{v}) = \frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$ donc $\cos(\overrightarrow{u}, \overrightarrow{v}) = 0$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = 0$

Si $\overrightarrow{u} \cdot \overrightarrow{v} = 0$, $\|\overrightarrow{u}\| \neq 0$ et $\|\overrightarrow{v}\| \neq 0$ alors $\cos(\overrightarrow{u}, \overrightarrow{v}) = 0$ donc $(\overrightarrow{u}, \overrightarrow{v}) = \frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$ et donc $\overrightarrow{u} \perp \overrightarrow{v}$

Si
$$\overrightarrow{u} = \overrightarrow{v}$$
 alors $\cos(\widehat{\overrightarrow{u}}, \overrightarrow{u}) = 1$ donc $\overrightarrow{u} \cdot \overrightarrow{u} = \parallel \overrightarrow{u} \parallel^2$

Définition 2

On nomme carré scalaire de \overrightarrow{u} le nombre réel noté \overrightarrow{u}^2 tel que $\overrightarrow{u}^2 = \overrightarrow{u} \cdot \overrightarrow{u} = \parallel \overrightarrow{u} \parallel^2$

3 Interprétation géométrique

On note \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls. Soient O, A et B trois points du plan tels que $\overrightarrow{u} = \overrightarrow{OA}$ et $\overrightarrow{v} = \overrightarrow{OB}$

Définition géométrique du produit scalaire 3.1

Définition 3 (Autre définition du produit scalaire)

$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{OA} \cdot \overrightarrow{OH}$$

où \overrightarrow{OH} est le projeté orthogonal de \overrightarrow{OB} sur (OA)

Démonstration:

Premier cas:

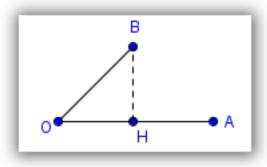


Figure 1

Dans le triangle OHB rectangle en H on a : $\cos(\widehat{\overrightarrow{OA}}, \widehat{\overrightarrow{OB}}) = \cos(\widehat{HOB}) = \frac{OH}{OB}$ d'où $OB \times \cos(\overrightarrow{\overrightarrow{OA}}, \overrightarrow{\overrightarrow{OB}}) = OH$ donc $\overrightarrow{OA} \cdot \overrightarrow{OB} = OA \times OB \times \cos(\overrightarrow{OA}, \overrightarrow{OB}) = OA \times OH = \overrightarrow{OA} \cdot \overrightarrow{OH}$ donc

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \overrightarrow{OH}$$

➡ Deuxième cas :

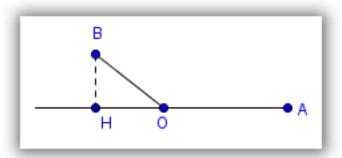


Figure 2

Dans le triangle
$$HOB$$
 rectangle en H on a : $\cos(\widehat{OH}, \widehat{OB}) = \cos(\widehat{HOB}) = \frac{OH}{OB}$ or $\widehat{HOB} = \pi - \widehat{AOB}$ d'où $\cos(\pi - \widehat{AOB}) = \frac{OH}{OB} = -\cos(\widehat{AOB})$ [Rappel : $\cos(\pi - \alpha) = -\cos(\alpha)$] donc $OB \times \cos(\widehat{AOB}) = -OH$ donc $\overrightarrow{OA} \cdot \overrightarrow{OB} = OA \times OB \times \cos(\widehat{OA}, \widehat{OB}) = OA \times (-OH) = \overrightarrow{OA} \cdot \overrightarrow{OH}$ donc $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \overrightarrow{OH}$

3.2 Retour aux propriétés du produit scalaire

3.3 Remarques et exemples

➡ Propriété n° 3 :

Si $\overrightarrow{OA} \perp \overrightarrow{OB}$ alors le projeté orthogonal de B sur (OA) est 0 donc $\overrightarrow{OA} \cdot \overrightarrow{OB} = 0$

➡ Propriété n° 1 :

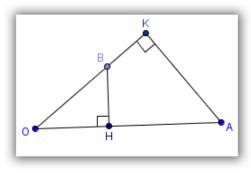


Figure 3

 $\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \overrightarrow{OH}$ et $\overrightarrow{OB} \cdot \overrightarrow{OA} = \overrightarrow{OB} \cdot \overrightarrow{OK}$ donc d'après la propriété 1 on a $\overrightarrow{OA} \cdot \overrightarrow{OH} = \overrightarrow{OB} \cdot \overrightarrow{OK}$ **Première remarque :**

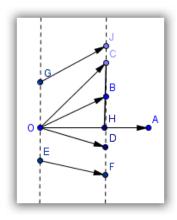


Figure 4

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \overrightarrow{OH}$$

$$= \overrightarrow{OA} \cdot \overrightarrow{OC}$$

$$= \overrightarrow{OA} \cdot \overrightarrow{OD}$$

$$= \overrightarrow{OA} \cdot \overrightarrow{EF}$$

$$= \overrightarrow{OA} \cdot \overrightarrow{EF}$$

$$= \overrightarrow{OA} \cdot \overrightarrow{GJ}$$

4 Produit scalaire et opérations

4.1 Distributivité du produit scalaire

Propriété 4 (A admettre)

On note \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs.

$$(1) \ \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w} (2) \ (\overrightarrow{v} + \overrightarrow{w}) \cdot \overrightarrow{u} = \overrightarrow{v} \cdot \overrightarrow{u} + \overrightarrow{w} \cdot \overrightarrow{u}$$

4.2 Linéarité du produit scalaire

Propriété 5

On note \overrightarrow{u} , \overrightarrow{v} et α un réel

$$(1) \overrightarrow{u} \cdot (\alpha \overrightarrow{v}) = \alpha \overrightarrow{u} \cdot \overrightarrow{v} (2) (\alpha \overrightarrow{u}) \cdot \overrightarrow{v} = \alpha \overrightarrow{u} \cdot \overrightarrow{v}$$

Démonstration:

Démontrons que $\overrightarrow{u} \cdot (\alpha \overrightarrow{v}) = \alpha \overrightarrow{u} \cdot \overrightarrow{v}$ $\overrightarrow{u} \cdot (\alpha \overrightarrow{v})$ $= \parallel \overrightarrow{u} \parallel \times \parallel \alpha \overrightarrow{v} \parallel \cos(\overrightarrow{u}, \alpha \overrightarrow{v})$ $= \parallel \overrightarrow{u} \parallel \times |\alpha| \parallel \overrightarrow{v} \parallel \cos(\overrightarrow{u}, \alpha \overrightarrow{v})$ $= |\alpha| \parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel \cos(\overrightarrow{u}, \alpha \overrightarrow{v})$

Il faut maintenant envisager trois cas:

 \Longrightarrow Si $\alpha>0$ alors $|\alpha|=\alpha$ et $\cos(\overrightarrow{u},\alpha\overrightarrow{v})=\cos(\overrightarrow{u},\overrightarrow{v})$

donc

 $\overrightarrow{u} \cdot (\alpha \overrightarrow{v}) = \alpha \parallel \overrightarrow{u} \parallel \parallel \overrightarrow{v} \parallel \cos(\overrightarrow{u}, \overrightarrow{v})$ $\overrightarrow{d}' \circ \overrightarrow{u} : \overrightarrow{u} \cdot (\alpha \overrightarrow{v}) = \alpha \overrightarrow{u} \cdot \overrightarrow{v}$ $\overrightarrow{u} \cdot (\alpha \overrightarrow{v})$

Si $\alpha < 0$ alors $|\alpha| = -\alpha$ et $\cos(\overrightarrow{u}, \alpha \overrightarrow{v}) = \cos(\pi + (\overrightarrow{u}, \overrightarrow{v})) = -\cos(\overrightarrow{u}, \overrightarrow{v})$ donc

Si $\alpha = 0$ alors $|\alpha| = 0$ donc $\overrightarrow{u} \cdot (\alpha \overrightarrow{v}) = \overrightarrow{u} \cdot \overrightarrow{0} = 0$ et $\alpha \overrightarrow{u} \cdot \overrightarrow{v} = 0 \times \overrightarrow{u} \cdot \overrightarrow{v} = 0$ donc $\overrightarrow{u} \cdot (\alpha \overrightarrow{v}) = \alpha \overrightarrow{u} \cdot \overrightarrow{v}$

La démonstration de $(\alpha \overrightarrow{u}) \cdot \overrightarrow{v} = \alpha \overrightarrow{u} \cdot \overrightarrow{v}$ est identique.

4.3 Autres définitions du produit scalaire

Soient \overrightarrow{u} et \overrightarrow{v} deux vecteurs.

Propriété 5

$$(1)\parallel\overrightarrow{u}+\overrightarrow{v}\parallel^2=\parallel\overrightarrow{u}\parallel^2+\parallel\overrightarrow{v}\parallel^2+2\overrightarrow{u}\cdot\overrightarrow{v}$$

$$(2) \parallel \overrightarrow{u} - \overrightarrow{v} \parallel^2 = \parallel \overrightarrow{u} \parallel^2 + \parallel \overrightarrow{v} \parallel^2 - 2\overrightarrow{u} \cdot \overrightarrow{v}$$

$$(2) \parallel \overrightarrow{u} - \overrightarrow{v} \parallel^2 = \parallel \overrightarrow{u} \parallel^2 + \parallel \overrightarrow{v} \parallel^2 - 2\overrightarrow{u} \cdot \overrightarrow{v}$$

$$(3) (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = \parallel \overrightarrow{u} \parallel^2 - \parallel \overrightarrow{v} \parallel^2$$

Démonstration:

$$(1) \\ \parallel \overrightarrow{u} + \overrightarrow{v} \parallel^2 = (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v}) = (\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{u} + (\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{v}$$

$$\operatorname{donc} \parallel \overrightarrow{u} + \overrightarrow{v} \parallel^2 = \overrightarrow{u} \cdot \overrightarrow{u} + \overrightarrow{v} \cdot \overrightarrow{u} + \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{v}$$

$$\operatorname{alors} \parallel \overrightarrow{u} + \overrightarrow{v} \parallel^2 = \parallel \overrightarrow{u} \parallel^2 + 2\overrightarrow{u} \cdot \overrightarrow{v} + \parallel \overrightarrow{v} \parallel^2$$

$$(2) \\ \parallel \overrightarrow{u} - \overrightarrow{v} \parallel^2 = (\overrightarrow{u} - \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = (\overrightarrow{u} - \overrightarrow{v}) \cdot \overrightarrow{u} - (\overrightarrow{u} - \overrightarrow{v}) \cdot \overrightarrow{v}$$

$$\operatorname{donc} \parallel \overrightarrow{u} - \overrightarrow{v} \parallel^2 = \overrightarrow{u} \cdot \overrightarrow{u} - \overrightarrow{v} \cdot \overrightarrow{u} - \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{v}$$

$$\operatorname{alors} \parallel \overrightarrow{u} - \overrightarrow{v} \parallel^2 = \parallel \overrightarrow{u} \parallel^2 - 2\overrightarrow{u} \cdot \overrightarrow{v} + \parallel \overrightarrow{v} \parallel^2$$

$$(3) \\ (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v}) = \overrightarrow{u} \cdot \overrightarrow{u} - \overrightarrow{v} \cdot \overrightarrow{v} = \parallel \overrightarrow{u} \parallel^2 - \parallel \overrightarrow{v} \parallel^2$$

A l'aide des formules (1) et (2) nous pouvons définir le produit scalaire de deux vecteurs \overrightarrow{u} et \overrightarrow{v} de la façon suivante:

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left[\| \overrightarrow{u} + \overrightarrow{v} \|^2 - \| \overrightarrow{u} \|^2 - \| \overrightarrow{v} \|^2 \right]$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left[\| \overrightarrow{u} \|^2 + \| \overrightarrow{v} \|^2 - \| \overrightarrow{u} - \overrightarrow{v} \|^2 \right]$$

Expression analytique du produit scalaire 5

 $(O, \overrightarrow{i}, \overrightarrow{j})$ est un repère orthonormal et les coordonnées des vecteurs \overrightarrow{u} et \overrightarrow{v} sont $\overrightarrow{u}(x, y)$ et $\overrightarrow{v}(x', y')$

5.1 Coordonnées d'un vecteur

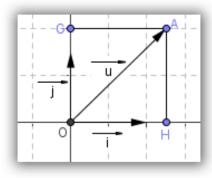


Figure 5

On a
$$\overrightarrow{i} \cdot \overrightarrow{u} = \overrightarrow{i} \cdot \overrightarrow{OH} = \overrightarrow{i} \cdot x_{\overrightarrow{u}} \overrightarrow{i} = x_{\overrightarrow{u}} \overrightarrow{i} \cdot \overrightarrow{i} = x_{\overrightarrow{u}}$$

et $\overrightarrow{j} \cdot \overrightarrow{u} = \overrightarrow{j} \cdot \overrightarrow{OG} = \overrightarrow{j} \cdot y_{\overrightarrow{u}} \overrightarrow{j} = y_{\overrightarrow{u}} \overrightarrow{j} \cdot \overrightarrow{j} = y_{\overrightarrow{u}}$

Les coordonnées du vecteur \overrightarrow{u} sont $(\overrightarrow{i} \cdot \overrightarrow{u}; \overrightarrow{j} \cdot \overrightarrow{u})$

Expression analytique d'un produit scalaire

Propriété 6

$$\overrightarrow{u} \cdot \overrightarrow{v} = x \times x' + y \times y'$$

$$\begin{array}{l} \textbf{D\'{e}monstration:} \\ \overrightarrow{u} \cdot \overrightarrow{v} = (x \overrightarrow{i} + y \overrightarrow{j}) \cdot (x' \overrightarrow{i} + y' \overrightarrow{j}) = x \overrightarrow{i} \cdot x \overrightarrow{i} + x \overrightarrow{i} \cdot y' \overrightarrow{j} + y \overrightarrow{j} \cdot x' \overrightarrow{i} + y \overrightarrow{j} \cdot y' \overrightarrow{j} \\ = xx' \parallel \overrightarrow{i} \parallel^2 + xy' \overrightarrow{i} \cdot \overrightarrow{j} + yx' \overrightarrow{i} \cdot \overrightarrow{j} + yy' \parallel \overrightarrow{j} \parallel^2 \\ \text{or } \parallel \overrightarrow{i} \parallel = \parallel \overrightarrow{j} \parallel = 1 \text{ et } \overrightarrow{i} \cdot \overrightarrow{j} = 0 \text{ car } \overrightarrow{i} \perp \overrightarrow{j} \\ \text{donc } \overrightarrow{u} \cdot \overrightarrow{v} = xx' + yy' \end{array}$$

Les différentes expressions du produit scalaire 6

Voilà donc les différentes expressions que l'on peut utiliser pour exprimer le produit scalaire de deux vecteurs \overrightarrow{u} et \overrightarrow{v} :

(1)
$$\overrightarrow{u} \cdot \overrightarrow{v} = \parallel \overrightarrow{u} \parallel \times \parallel \overrightarrow{v} \parallel \times \cos(\widehat{\overrightarrow{u}, \overrightarrow{v}})$$

(2) Si
$$\overrightarrow{OA} = \overrightarrow{u}$$
 et $\overrightarrow{OB} = \overrightarrow{v}$ alors $\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{OA} \cdot \overrightarrow{OH}$ avec \overrightarrow{OH} le projeté orthogonal de \overrightarrow{OB} sur (OA)

(3)
$$\overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left[\| \overrightarrow{u} + \overrightarrow{v} \|^2 - \| \overrightarrow{u} \|^2 - \| \overrightarrow{v} \|^2 \right]$$

$$(4) \qquad \overrightarrow{u} \cdot \overrightarrow{v} = \frac{1}{2} \left[\| \overrightarrow{u} \|^2 + \| \overrightarrow{v} \|^2 - \| \overrightarrow{u} - \overrightarrow{v} \|^2 \right]$$

Dans un repère $(O, \overrightarrow{i}, \overrightarrow{j})$ si les vecteurs ont pour coordonnées $\overrightarrow{u}(x,y)$ et $\overrightarrow{v}(x',y')$ alors $\overrightarrow{u}\cdot\overrightarrow{v}=xx'+yy'$

Applications 7

Formule d'Al-Kashi 7.1

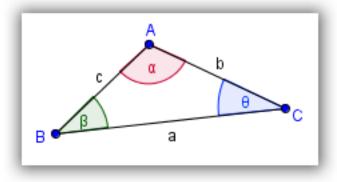


Figure 6

Théorème 1 (Al-Kashi XIV^{ime})

Si
$$ABC$$
 est un triangle et si on note $AB = c$, $AC = b$ et $BC = a$,
$$(\overrightarrow{AB}, \overrightarrow{AC}) = \alpha \ , \ (\overrightarrow{BC}, \overrightarrow{BA}) = \beta \ \text{et} \ (\overrightarrow{CA}, \overrightarrow{CB}) = \theta$$

$$a^2 = b^2 + c^2 - 2bc\cos(\alpha)$$

$$b^2 = a^2 + c^2 - 2ac\cos(\beta)$$

$$c^2 = a^2 + b^2 - 2ab\cos(\theta)$$

Démonstration:

Démontrons la première égalité :

$$a^{2} = BC^{2} = \overrightarrow{BC} \cdot \overrightarrow{BC} = (\overrightarrow{BA} + \overrightarrow{AC})^{2} = (\overrightarrow{AC} - \overrightarrow{AB})^{2} = AC^{2} + AB^{2} - 2\overrightarrow{AC} \cdot \overrightarrow{AB}$$

$$\operatorname{donc} a^{2} = b^{2} + c^{2} - 2AC \times AB \times \cos(\overrightarrow{AC}, \overrightarrow{AB}) = b^{2} + c^{2} - 2bc\cos(\alpha)$$

$$\operatorname{Conclusion}: \quad a^{2} = b^{2} + c^{2} - 2bc\cos(\alpha)$$

7.2 Equation cartésienne d'une droite perpendiculaire à une autre

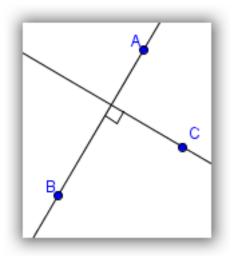


Figure 7

Dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, on note (AB) la droite passant par $A(x_A, y_B)$ et $B(x_B, y_B)$. On souhaite trouver une équation de la droite Δ passant par $C(x_C, y_C)$ et perpendiculaire à (AB). Si M(x, y) est un point de la droite Δ alors $\overrightarrow{CM} \perp \overrightarrow{AB}$ donc $\overrightarrow{CM} \cdot \overrightarrow{AB} = 0$

$$M \in \Delta \Leftrightarrow \overrightarrow{CM} \cdot \overrightarrow{AB} = 0$$

Il reste donc à utiliser la formulation (5) du produit scalaire pour pouvoir trouver l'équation de la droite Δ . $\overrightarrow{CM} \cdot \overrightarrow{AB} = 0 \Leftrightarrow (x - x_C)(x_B - x_A) + (y - y_C)(y_B - y_A) = 0$

7.3 Equation cartésienne d'un cercle

On note \mathcal{C} un cercle dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ et on souhaite trouver l'équation du cercle. C'est à dire la relation entre les abscisses et les ordonnées de tous les points sur le cercle. Il y a deux cas possibles :

- 1. Connaissant le centre et le rayon de $\mathcal C$
- 2. Connaissant les coordonnées de deux points diamétralement opposés sur \mathcal{C}

7.3.1 Connaissant le centre et le rayon

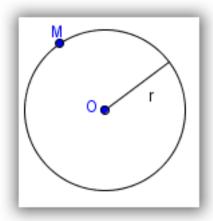


Figure 8

Soit \mathcal{C} le cercle de centre $O(x_O, y_O)$ et de rayon r. On note M(x, y) un point de \mathcal{C} . Si $M \in \mathcal{C}$ alors OM = r et donc $OM^2 = r^2$ On obtient donc $(x - x_O)^2 + (y - y_O)^2 = r^2$ que l'on nomme une équation cartésienne du cercle \mathcal{C} .

7.3.2 Connaissant deux points diamétralement opposés

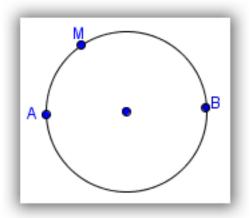


Figure 9

Soit C le cercle de diamètre [AB] avec $A(x_A, y_A)$ et $B(x_B, y_B)$. On note M(x, y) un point quelconque sur le cercle.

Si $M \in \mathcal{C}$ alors $(\overrightarrow{MA}, \overrightarrow{MB}) = \pm \frac{\pi}{2} + 2k\pi$ donc $\overrightarrow{MA} \cdot \overrightarrow{MB} = 0$

d'où $(x_A - x)(x_B - x) + (y_A - y)(y_B - y) = 0$ que l'on nomme une équation cartésienne du cercle \mathcal{C} .

7.4 Formule de la médiane

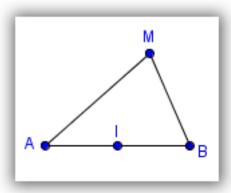


Figure 10

Théorème (Médiane)

Si MAB est un triangle et I le milieu de [AB] alors

(1)
$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$

(2)
$$MA^2 - MB^2 = 2\overrightarrow{MI} \cdot \overrightarrow{BA}$$

$$(3) \qquad \overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - IA^2 = MI^2 - IB^2 = MI^2 - \frac{1}{4}AB^2$$

Démonstration :(Formule 1)

$$\begin{split} MA^2 + MB^2 &= \overrightarrow{MA}^2 + \overrightarrow{MB}^2 = (\overrightarrow{MI} + \overrightarrow{IA})^2 + (\overrightarrow{MI} + \overrightarrow{IB})^2 = \\ MI^2 + IA^2 + 2\overrightarrow{MI} \cdot \overrightarrow{IA} + MI^2 + IB^2 + 2\overrightarrow{MI} \cdot \overrightarrow{IB} = 2MI^2 + IA^2 + IB^2 + 2\overrightarrow{MI}(\overrightarrow{IA} + \overrightarrow{IB}) \\ \text{or } \overrightarrow{IA} + \overrightarrow{IB} &= \overrightarrow{0} \end{split}$$

donc
$$MA^2 + MB^2 = 2MI^2 + IA^2 + IB^2 = 2MI^2 + 2\left(\frac{1}{2}AB\right)^2 = 2MI^2 + \frac{1}{2}AB^2$$

donc
$$MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$$

Démonstration :(Formule 2)

$$MA^{2} - MB^{2} = \overrightarrow{MA}^{2} - \overrightarrow{MB}^{2} = (\overrightarrow{MI} + \overrightarrow{IA})^{2} - (\overrightarrow{MI} + \overrightarrow{IB})^{2}$$

$$= MI^{2} + IA^{2} + 2\overrightarrow{MI} \cdot \overrightarrow{IA} - MI^{2} - IB^{2} - 2\overrightarrow{MI} \cdot \overrightarrow{IB} = 2\overrightarrow{MI} \cdot (\overrightarrow{IA} - \overrightarrow{IB}) = 2\overrightarrow{MI} \cdot \overrightarrow{BA}$$

$$\operatorname{donc} MA^{2} - MB^{2} = 2\overrightarrow{MI} \cdot \overrightarrow{BA}$$

Démonstration :(Formule 3)

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = (\overrightarrow{MI} + \overrightarrow{IA})(\overrightarrow{MI} + \overrightarrow{IB}) = MI^2 + \overrightarrow{MI} \cdot \overrightarrow{IB} + \overrightarrow{IA} \cdot \overrightarrow{MI} + \overrightarrow{IA} \cdot \overrightarrow{IB}$$

or $\overrightarrow{MI} \perp \overrightarrow{IB}$ et $\overrightarrow{IA} \perp \overrightarrow{MI}$ donc

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 + \overrightarrow{IA} \cdot \overrightarrow{IB} = MI^2 + IA \times IB \times \cos(\pi + 2k\pi)$$

$$\operatorname{donc} \overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - IA \times IB = MI^2 - \left(\frac{1}{2}AB\right)\left(\frac{1}{2}AB\right) = MI^2 - \frac{1}{4}AB^2 \text{ d'où}$$

$$\overrightarrow{MA}\cdot\overrightarrow{MB}=MI^2-\frac{1}{4}AB^2$$

Lignes de niveau 7.5

Lignes de niveau du type $MA^2 + MB^2 = k$

On souhaite trouver l'ensemble des points M connaissant A, B et $k \in \mathbb{R}$ tels que $MA^2 + MB^2 = k$. Pour cela on utilise la formule (1) du théorème de la médiane. On nomme I le milieu de [AB] et donc d'après le théorème de la médiane on a $MA^2 + MB^2 = 2MI^2 + \frac{1}{2}AB^2$ donc

$$MA^2 + MB^2 = k \Leftrightarrow 2MI^2 + \frac{1}{2}AB^2 = k$$

$$\Leftrightarrow 2MI^2 = k - \frac{1}{2}AB^2 \Leftrightarrow MI^2 = \frac{1}{2}k - \frac{1}{4}AB^2$$

- Premier cas : Si $\frac{1}{2}k \frac{1}{4}AB^2 < 0$ alors il n'y a aucun point M possible donc $E_M = \emptyset$ Deuxième cas : Si $\frac{1}{2}k \frac{1}{4}AB^2 > 0$ on note $\lambda = \frac{1}{2}k \frac{1}{4}AB^2$ donc il faut trouver M tel que $MI^2 = \lambda \Leftrightarrow MI = \sqrt{\lambda}$ ou $MI = -\sqrt{\lambda}$ mais la deuxième solution est impossible en géométrie donc

L'ensemble des points M est donc le cercle de centre I et de rayon $\sqrt{\frac{1}{2}k - \frac{1}{4}AB^2}$.

Troisième cas :Si $\frac{1}{2}k - \frac{1}{4}AB^2 = 0$ alors $MI^2 = 0$ donc MI = 0. On a donc $E_M = \{I\}$

Lignes de niveau du type $MA^2 - MB^2 = k$

On souhaite trouver l'ensemble des points M connaissant A, B et $k \in \mathbb{R}$ tels que $MA^2 - MB^2 = k$. Pour cela on utilise la formule (2) du théorème de la médiane. On nomme I le milieu de [AB] et donc d'après le théorème de la médiane on a $\overrightarrow{MA^2} - \overrightarrow{MB^2} = 2\overrightarrow{MI} \cdot \overrightarrow{BA}$ donc $\overrightarrow{MA^2} - \overrightarrow{MB^2} = k \Leftrightarrow 2\overrightarrow{MI} \cdot \overrightarrow{BA} = k$ $2\overrightarrow{MI} \cdot \overrightarrow{BA} = k \Leftrightarrow \overrightarrow{MI} \cdot \overrightarrow{BA} = \frac{1}{2}k \Leftrightarrow \overrightarrow{IM} \cdot \overrightarrow{AB} = \frac{1}{2}k$

On note H le point de (AB) tel que $\overrightarrow{IH} \cdot \overrightarrow{AB} = \frac{1}{2}k$

On a alors $\overrightarrow{IM} \cdot \overrightarrow{AB} = \overrightarrow{IH} \cdot \overrightarrow{AB} \Leftrightarrow (\overrightarrow{IM} - \overrightarrow{IH}) \cdot \overrightarrow{AB} = 0 \Leftrightarrow \overrightarrow{HM} \cdot \overrightarrow{AB} = 0$

Donc l'ensemble des points M est sur la droite perpendiculaire à (AB) et passant par H.

De plus à l'aide de $\overrightarrow{IH} \cdot \overrightarrow{AB} = \frac{1}{2}k$ on peut placer le point H sur la droite (AB).

Lignes de niveau du type $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$

On souhaite trouver l'ensemble des points M connaissant A, B et $k \in \mathbb{R}$ tels que $\overrightarrow{MA} \cdot \overrightarrow{MB} = k$. Pour cela on utilise la formule (3) du théorème de la médiane. On nomme I le milieu de [AB] et donc d'après le théorème de la médiane on a $\overrightarrow{MA} \cdot \overrightarrow{MB} = MI^2 - \frac{1}{4}AB^2$ donc

$$\overrightarrow{MA} \cdot \overrightarrow{MB} = k \Leftrightarrow MI^2 - \frac{1}{4}AB^2 = k \Leftrightarrow MI^2 = k + \frac{1}{4}AB^2$$

- Premier cas : Si $k + \frac{1}{4}AB^2 < 0$ alors il n'y a pas de solution : $E_M = \emptyset$
- Deuxième cas :Si $k + \frac{1}{4}AB^2 > 0$ alors on pose $\lambda = k + \frac{1}{4}AB^2$

On a donc $MI^2 = \lambda \Leftrightarrow MI = \sqrt{\lambda}$ ou $MI = -\sqrt{\lambda}$ la deuxième solution étant impossible en Géométrie, on obtient $MI = \sqrt{\lambda}$

Donc l'ensemble des points M est le cercle de centre I et de rayon $\sqrt{\lambda}$.

Troisième cas $:k + \frac{1}{4}AB^2 = 0$ alors MI = 0 donc $E_M = \{I\}$

7.6 De nouvelles formules en trigonométrie

7.6.1 Formules d'addition

Théorème 3 (Formules d'addition)

 $\forall a \mathbb{R} \text{ et } \forall b \in \mathbb{R} \text{ on a}$

$$(1) \cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b) \quad (2) \cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

(3)
$$\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)$$
 (4) $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$

Démonstration:

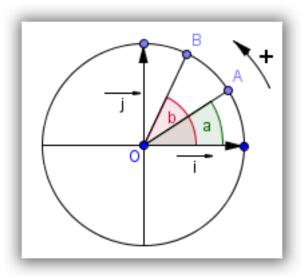


Figure 11

→ Démontrons la formule (1) :

Calculons le produit scalaire $\overrightarrow{OA} \cdot \overrightarrow{OB}$ de deux façons différentes :

- A l'aide des coordonnées :

On a
$$\overrightarrow{OA}(\cos(a); \sin(a))$$
 et $\overrightarrow{OB}(\cos(b); \sin(b))$

$$\operatorname{donc} \overrightarrow{OA} \cdot \overrightarrow{OB} = x_{\overrightarrow{OA}} \times x_{\overrightarrow{OB}} + y_{\overrightarrow{OA}} \times y_{\overrightarrow{OB}} = \cos(a)\cos(b) + \sin(a)\sin(b)$$

– A l'aide du $\cos(\overrightarrow{OA}, \overrightarrow{OB})$:

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = OA \times OB \times \cos(\overrightarrow{OA}, \overrightarrow{OB})$$

or
$$(\overrightarrow{OA}, \overrightarrow{OB}) = (\overrightarrow{OA}, \overrightarrow{i}) + (\overrightarrow{i}, \overrightarrow{OB}) = (\overrightarrow{i}, \overrightarrow{OB}) - (\overrightarrow{i}, \overrightarrow{OA}) = b - a + 2k\pi, k \in \mathbb{Z}$$

donc
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = OA \times OB \times \cos(a - b) = \cos(b - a)$$

Conclusion: $\forall a \in \mathbb{R} \text{ et } \forall b \in \mathbb{R} \text{ on a } \cos(b-a) = \cos(a)\cos(b) + \sin(a)\sin(b)$

■ Démontrons la formule (2) :

Il suffit de reprendre la formule (1) en remplaçant b par -b.

$$\cos(a+b) = \cos(a-(-b)) = \cos(a)\cos(-b) + \sin(a)\sin(-b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

→ Démontrons la formule (3) :

D'après le chapitre précédent, on a
$$\sin(a-b) = \cos\left(\frac{\pi}{2} - (a-b)\right) = \cos\left(\left(\frac{\pi}{2} - a\right) + b\right)$$
 donc $\sin(a-b) = \cos\left(\frac{\pi}{2} - a\right)\cos(b) - \sin\left(\frac{\pi}{2} - a\right)\sin(b) = \sin(a)\cos(b) - \cos(a)\sin(b)$

Démontrons la formule (4):

Il suffit de reprendre la formule (3) en remplaçant b par -b.

Alors
$$\sin(a+b) = \sin(a-(-b)) = \sin(a)\cos(-b) - \cos(a)\sin(-b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

14

7.6.2 Formules de linéarisation

Dans les formules (2) et (4) précédentes, si on remplace b par a on obtient :

1.
$$\cos(2a) = \cos^2(a) - \sin^2(a)$$

$$2. \ \ \overline{\sin(2a) = 2\sin(a)\cos(a)}$$

7.6.3 Formules de duplication

1.
$$\cos(2a) = \cos^2(a) - \sin^2(a) = \cos^2(a) - (1 - \cos^2(a)) = 2\cos^2(a) - 1$$

 $\operatorname{donc} 2\cos^2(a) = \cos(2a) + 1 \operatorname{d'où} \left[\cos^2(a) = \frac{1 + \cos(2a)}{2}\right]$

2.
$$\cos(2a) = \cos^2(a) - \sin^2(a) = 1 - \sin^2(a) - \sin^2(a) = 1 - 2\sin^2(a)$$

donc $2\sin^2(a) = 1 - \cos(2a)$ d'où $\sin^2(a) = \frac{1 - \cos(2a)}{2}$

7.7 Autres formules à connaître

7.7.1 Aire d'un triangle

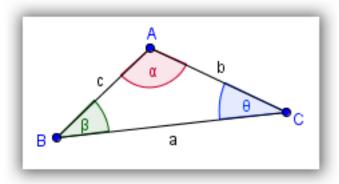


Figure 12

On note S la surface du triangle ci-dessus, alors :

$$S = \frac{1}{2}bc\sin(\alpha)$$

$$S = \frac{1}{2}ac\sin(\beta)$$

$$S = \frac{1}{2}ab\sin(\theta)$$

Démonstration:

Démontrons la troisème formule :

Si \widehat{ACH} est aigu :

On sait que
$$S = \frac{1}{2}BC \times AH$$

Or dans le triangle AHC rectangle en H on a $AH=AC \times \sin(\theta)$ donc $S=\frac{1}{2}ab\sin(\theta)$

$$\underline{\text{Si }\widehat{ACH} \text{ est obtu}}:$$

$$\overline{\text{On a } \sin(\widehat{ACH})} = \sin(\pi - \theta) = \sin(\theta)$$

donc on obtient la même formule.

Formule des sinus 7.7.2

Propriété

Dans le triangle ci-dessus, on a :

$$\frac{abc}{2S} = \frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\theta)}$$

Démonstration:

$$S = \frac{1}{2}bc\sin(\alpha) = \frac{1}{2}ac\sin(\beta) = \frac{1}{2}ab\sin(\theta)$$

On sait d'après le paragraphe précédent que : $S = \frac{1}{2}bc\sin(\alpha) = \frac{1}{2}ac\sin(\beta) = \frac{1}{2}ab\sin(\theta)$ En multipliant les égalités par $\frac{2}{abc}$ puis en prenant l'inverse, on obtient les bonnes formules.