Préambule

On notera, comme à l'accoutumée, ${\bf N}$ l'ensemble des entiers naturels, ${\bf R}$ le corps des nombres réels et ${\bf C}$ le corps des nombres complexes.

Soient $\Delta = \{z \in \mathbf{C} , |z| \leqslant 1\}, n \in \mathbf{N} \setminus \{0, 1\},\$

$$\mathcal{K}_n = \{(z_1, ..., z_n) \in \mathbf{C}^n \mid z_1 = 1 \text{ et } (z_2, ..., z_n) \in \Delta^{n-1}\}$$

et, pout tout $k \in \{1, 2, ..., n\}$ et tout $(z_1, ..., z_n) \in \mathcal{K}_n$,

$$s_k(z_1, z_2, ..., z_n) = \sum_{m=1}^{m=n} (z_m)^k$$

qu'on notera désormais, plus brièvement, s_k .

1. Justifier l'existence du nombre réel :

$$R_n = \inf_{(z_1, \dots, z_n) \in \mathcal{K}_n} \left(\max_{1 \le k \le n} |s_k| \right).$$

2. Montrer que:

$$R_n = \min_{(z_1, \dots, z_n) \in \mathcal{K}_n} \left(\max_{1 \le k \le n} |s_k| \right).$$

3. Montrer que $(R_n)_{n \in \mathbb{N} \setminus \{0,1\}}$ est une suite de nombres réels de l'intervalle [0,1].

L'objet du problème est de montrer que, si l'on note :

$$R = \inf_{n \in \mathbf{N} \setminus \{0,1\}} R_n$$

alors:

$$R > \frac{1}{6}$$
 [théorème de **Atkinson**]

Le problème est divisé en trois parties dont les deux premières sont indépendantes. La dernière partie, qui contient la démonstration proprement dite du théorème, utilise des résultats de la deuxième partie.

Première partie $(encadrement de R_2)$

- 1. On désigne par Δ' , l'ensemble des nombres complexes $z = \rho e^{i\theta}$, où $\rho \in [0, 1]$ et $\theta \in [0, \frac{2\pi}{3}]$ et par $\overline{\Delta'}$, l'ensemble des éléments conjugués de Δ' .
 - (a) Montrer que, pour tout z de Δ' ,

$$|1+z| \geqslant \frac{\sqrt{3}}{2}.$$

(b) Montrer que, pour tout $z de \Delta$,

$$z \in \Delta' \cup \overline{\Delta'}$$
 ou $z^2 \in \Delta' \cup \overline{\Delta'}$.

(c) En déduire que

$$R_2 \geqslant \frac{\sqrt{3}}{2}$$
.

- (d) Montrer que $R_2 > \frac{\sqrt{3}}{2}$.
- 2. En comparant:

$$\varphi\left(\rho\right) = \left|1 + \rho e^{2i\frac{\pi}{3}}\right|^2$$

et $\varphi(\rho^2) = \left|1 + \rho^2 e^{2i\frac{\pi}{3}}\right|^2 = \left|1 + \rho^2 e^{4i\frac{\pi}{3}}\right|^2$, pour $\rho \in [0, 1]$, montrer que :

$$R_2 \leqslant \sqrt{3 - \sqrt{5}}$$
.

Deuxième partie

On définit \mathcal{L} comme étant $\mathbf{C}\backslash\mathbf{R}^-$, c'est à dire l'ensemble des $z\in\mathbf{C}$ tels qu'il existe $(\rho,\theta)\in\mathbf{R}_+^*\times]-\pi,\pi[$ vérifiant $z=\rho e^{i\theta}.$

On utilise aussi pour tout z de \mathcal{L} sa partie réelle x et sa partie imaginaire y, à savoir les réels x et y tels que z = x + iy.

1. (a) Montrer que l'on peut définir une application continue ℓ de $\mathcal L$ dans $\mathbf C$ en posant, pour tout z de $\mathcal L$:

$$\ell(z) = \ln(|z|) + 2i \operatorname{Arctan}(\frac{y}{x+|z|})$$

où, pour tout réel t, Arctan(t) désigne l'unique réel θ de l'intervalle] $-\frac{\pi}{2}, \frac{\pi}{2}[$ tel que $\tan(\theta)=t.$

- (b) Montrer que, pour tout (ρ, θ) appartenant à $\mathbf{R}_+^* \times] \pi, \pi[: \ell(\rho e^{i\theta}) = \ln(\rho) + i\theta.$
- (c) exp désignant l'application exponentielle complexe, en déduire, pour tout z de $\mathcal L\,$:

$$\exp(\ell(z)) = z.$$

- 2. Soit $\mathcal{L}' = \{ u \in \mathbf{C} \mid 1 + u \in \mathcal{L} \}.$
 - (a) Pour tout $u \in \mathcal{L}'$, montrer que

$$\int_0^1 \frac{u}{1+tu} dt$$

est définie et que l'application I de \mathcal{L}' dans $\mathbf C$ définie par :

$$I(u) = \int_0^1 \frac{u}{1 + tu} \mathrm{d}\,t$$

est continue sur \mathcal{L}' .

(b) Montrer que, pour u fixé dans \mathcal{L}' , l'application de [0,1] dans \mathbf{C} définie par :

$$x \mapsto (1 + xu) \exp\left(-\int_0^x \frac{u}{1 + tu} dt\right)$$

est constante.

En déduire que $\frac{\ell(1+u)-I(u)}{2i\pi}$ est un entier relatif, et plus précisément que $\ell(1+u)=I(u)$.

(c) Démontrer que pour tout $u \in \mathbf{C}$ de module strictement plus petit que 1 :

$$\ell(1+u) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} u^k.$$

Troisième partie

On reprend dans cette partie les définitions du préambule, à la nuance près que, si n est un entier fixé supérieur ou égal à 2, et $(z_1, ..., z_n)$ un élément de \mathcal{K}_n ,

$$s_k = s_k(z_1, .., z_n) = \sum_{m=1}^{m=n} (z_m)^k$$

est défini pour tout $k \in \mathbf{N}^*$.

On désigne de plus par $s=s\left(z_{1},..,z_{n}\right)$ le nombre réel

$$s = s\left(z_1,..,z_n\right) = \max_{1 \leqslant k \leqslant n} \left|s_k\right|.$$

1. (a) Montrer que pour tout $z \in \mathbb{C}$, vérifiant |z| < 1,

$$\exp(-\sum_{k=1}^{+\infty} \frac{s_k z^k}{k}) = \prod_{m=1}^{m=n} (1 - z_m . z).$$

(b) Montrer qu'il existe une unique série entière $\sum_{m\geqslant 0} \alpha_m z^m$, de rayon de convergence infini, telle que pour tout $z\in \mathbf{C}$:

$$\exp(-\sum_{k=1}^{n} \frac{s_k z^k}{k}) - \prod_{j=1}^{j=n} (1 - z_j z) = \sum_{m=0}^{+\infty} \alpha_m z^m.$$

(c) Montrer qu'il existe deux fonctions λ et β définies sur l'ensemble des complexes de module strictement plus petit que un, à valeurs dans \mathbf{C} , bornées au voisinage de zéro, telles que, pour tout $z \in \mathbf{C}$ vérifiant |z| < 1,

$$\exp(-\sum_{k=1}^{n} \frac{s_k z^k}{k}) - \prod_{j=1}^{j=n} (1 - z_j z) = \lambda(z) \left(1 - \exp(z^{n+1}\beta(z))\right).$$

En déduire que, pour tout $m \in \{0,..,n\}, \ \alpha_m = 0.$

2. On définit l'application g de ${\bf R}$ dans ${\bf C}$ par :

$$g(\theta) = -\sum_{m=1}^{m=n} \frac{s_m}{m} e^{im\theta}$$

et on désigne $\exp(g(\theta))$ par $e^{g(\theta)}$.

(a) Montrer que:

$$e^{g(\theta)} = \prod_{j=1}^{j=n} \left(1 - z_j \cdot e^{i\theta}\right) + \sum_{m=n+1}^{+\infty} \alpha_m e^{im\theta}.$$

En déduire que $e^{g(0)} = \sum_{m=n+1}^{+\infty} \alpha_m$.

(b) Montrer que, pour tout $m \in \mathbb{N}^*$ vérifiant $m \ge n+1$,

$$\alpha_m = \frac{1}{2im\pi} \int_{-\pi}^{+\pi} g'(\theta) e^{(g(\theta) - im\theta)} d\theta.$$

3. Pour $r \in [0,1[$, on définit l'application h_r de ${\bf R}$ dans ${\bf C}$ par :

$$h_r\left(\theta\right) = \sum_{m=n+1}^{+\infty} \frac{r^m e^{im\theta}}{m}.$$

Dans ce qui suit, pour toute fonction φ continue et 2π périodique de \mathbf{R} dans \mathbf{C} , pour tout $p \in \mathbf{Z}$, $c_p(\varphi)$ désignera le coefficient de Fourier complexe d'indice p de φ .

On rappelle le résultat suivant, utilisable librement :

Si φ et ψ sont deux fonctions continues et 2π périodiques,

$$\frac{1}{2\pi} \int_{-\pi}^{+\pi} \overline{\varphi(\theta)} \psi(\theta) d\theta = \lim_{N \to +\infty} \sum_{p=-N}^{p=+N} \overline{c_p(\varphi)} c_p(\psi).$$

(a) Montrer que h_r est définie, 2π périodique et continue, et que :

$$e^{g(0)} = \lim_{r \to 1^{-}} \frac{1}{i} \sum_{m=n+1}^{+\infty} \overline{c_m(h_r)}.c_m(g'e^g)$$
$$= \lim_{r \to 1^{-}} \frac{1}{2i\pi} \int_{-\pi}^{+\pi} \overline{h_r(\theta)}g'(\theta)e^{g(\theta)}d\theta.$$

On pose par la suite:

$$A(r) = \frac{1}{2i\pi} \int_{-\pi}^{+\pi} g'(\theta) e^{g(\theta) - g(0)} \overline{h_r(\theta)} d\theta.$$

(b) Montrer que:

$$|A(r)|^2 \leqslant \frac{1}{4\pi^2} \left(\int_{-\pi}^{+\pi} |g'(\theta)|^2 d\theta \right) \times \left(\int_{-\pi}^{+\pi} |e^{g(\theta) - g(0)}|^2 \times |h_r(\theta)|^2 d\theta \right)$$

- 4. Il s'agit dans cette dernière question d'utiliser l'inégalité précédente afin de démontrer le théorème de Atkinson.
 - (a) Montrer que:

$$\int_{-\pi}^{+\pi} |g'(\theta)|^2 d\theta \leqslant 2\pi n s^2.$$

On pose par la suite:

$$I_{1}(r) = \int_{-\frac{\pi}{n}}^{+\frac{\pi}{n}} \left| e^{g(\theta) - g(0)} \right|^{2} \times \left| h_{r}(\theta) \right|^{2} d\theta$$

$$I_{2}(r) = \int_{-\frac{\pi}{n}}^{+\pi} \left| e^{g(\theta) - g(0)} \right|^{2} \times \left| h_{r}(\theta) \right|^{2} d\theta \text{ et } I_{3}(r) = \int_{-\pi}^{-\frac{\pi}{n}} \left| e^{g(\theta) - g(0)} \right|^{2} \times \left| h_{r}(\theta) \right|^{2} d\theta.$$

- (b) Majoration de $I_1(r)$:
 - i. Montrer que pour tout $\theta \in \left[-\frac{\pi}{n}, \frac{\pi}{n}\right], |g(\theta) g(0)| \leq \pi s$.
 - ii. Montrer que:

$$\int_{-\pi}^{+\pi} |h_r(\theta)|^2 d\theta \leqslant \frac{2\pi}{n}.$$

iii. Montrer que:

$$I_1\left(r\right) \leqslant \frac{2\pi e^{2\pi s}}{n}.$$

(c) Majoration de $I_{2}\left(r\right)$ et $I_{3}\left(r\right)$:
Pour tout $\theta \in \left[\frac{\pi}{n}, \pi\right]$, montrer successivement :

$$\begin{split} \text{i.} \quad & \sum_{\frac{\pi}{\theta} < m \leqslant n} \frac{1}{m} \leqslant 1 + \ln\left(\frac{n\theta}{\pi}\right) \\ & g\left(\theta\right) - g\left(0\right) = -\sum_{1 \leqslant m \leqslant \frac{\pi}{\theta}} \frac{s_m}{m} \left(e^{im\theta} - 1\right) - \sum_{\frac{\pi}{\theta} < m \leqslant n} \frac{s_m}{m} \left(e^{im\theta} - 1\right) \\ & \text{puis } \left|g\left(\theta\right) - g\left(0\right)\right| \leqslant \pi s + 2s \left(1 + \ln\left(\frac{n\theta}{\pi}\right)\right). \end{split}$$

ii.
$$|h_r(\theta)| \leqslant \frac{2}{n|1 - re^{i\theta}|}$$
.

iii. On pose:

$$M(r) = \int_{\underline{\pi}}^{\pi} e^{2\pi s + 4s\left(1 + \ln\left(\frac{n\theta}{\pi}\right)\right)} \times \frac{4}{n^2 \left|1 - re^{i\theta}\right|^2} d\theta.$$

Montrer que $I_2(r) \leq M(r)$ et que, si $s \neq \frac{1}{4}$, M(r) possède, lorsque r tend vers 1⁻, une limite telle que :

$$\lim_{r \to 1^{-}} M(r) \leqslant \frac{\pi e^{2s(\pi+2)}}{n(1-4s)} \left(1 - n^{4s-1}\right).$$

(On pourra utiliser l'inégalité, pour tout θ de $\left[\frac{\pi}{n}, \pi\right] : \left|1 - e^{i\theta}\right| \geqslant \frac{2\theta}{\pi}$)

iv. Expliquer brièvement pourquoi on a:

$$I_3(r) \leqslant M(r)$$
.

- (d) Etape finale:
 - i. A l'aide de l'inégalité vue à la question (3b) de cette partie et des résultats précédents, en faisant tendre r vers 1^- , montrer que, si $0 \le s < \frac{1}{4}$, on a :

$$1 \leqslant s^2 e^{2\pi s} \left(1 + \frac{e^{4s}}{1 - 4s} \left(1 - n^{4s-1} \right) \right).$$

ii. En utilisant l'application f de $[0,\frac{1}{4}[$ dans ${\bf R}$ définie par :

$$f(x) = x^{2} e^{2\pi x} \left(1 + \frac{e^{4x}}{1 - 4x} \right)$$

dont on étudiera les variations, montrer que $R>\frac{2}{11}$ et conclure.
